Skip to yearly menu bar Skip to main content


Poster

Bit Prioritization in Variational Autoencoders via Progressive Coding

Rui Shu · Stefano Ermon

Hall E #431

Keywords: [ MISC: Representation Learning ] [ PM: Graphical Models ] [ DL: Generative Models and Autoencoders ]


Abstract:

The hierarchical variational autoencoder (HVAE) is a popular generative model used for many representation learning tasks. However, its application to image synthesis often yields models with poor sample quality. In this work, we treat image synthesis itself as a hierarchical representation learning problem and regularize an HVAE toward representations that improve the model's image synthesis performance. We do so by leveraging the progressive coding hypothesis, which claims hierarchical latent variable models that are good at progressive lossy compression will generate high-quality samples. To test this hypothesis, we first show empirically that conventionally-trained HVAEs are not good progressive coders. We then propose a simple method that constrains the hierarchical representations to prioritize the encoding of information beneficial for lossy compression, and show that this modification leads to improved sample quality. Our work lends further support to the progressive coding hypothesis and demonstrates that this hypothesis should be exploited when designing variational autoencoders.

Chat is not available.