Poster

Forward Operator Estimation in Generative Models with Kernel Transfer Operators

Zhichun Huang · Rudrasis Chakraborty · Vikas Singh

Hall E #336

Keywords: [ MISC: General Machine Learning Techniques ] [ DL: Generative Models and Autoencoders ]

Abstract:

Generative models which use explicit density modeling (e.g., variational autoencoders, flow-based generative models) involve finding a mapping from a known distribution, e.g. Gaussian, to the unknown input distribution. This often requires searching over a class of non-linear functions (e.g., representable by a deep neural network). While effective in practice, the associated runtime/memory costs can increase rapidly, usually as a function of the performance desired in an application. We propose a substantially cheaper (and simpler) forward operator estimation strategy based on adapting known results on kernel transfer operators. We show that our formulation enables highly efficient distribution approximation and sampling, and offers surprisingly good empirical performance that compares favorably with powerful baselines, but with significant runtime savings. We show that the algorithm also performs well in small sample size settings (in brain imaging).

Chat is not available.