A Study on the Ramanujan Graph Property of Winning Lottery Tickets

Bithika Pal · Arindam Biswas · Sudeshna Kolay · Pabitra Mitra · Biswajit Basu

Hall E #506

Keywords: [ DL: Theory ] [ PM: Spectral Methods ] [ DL: Algorithms ]

[ Abstract ]
[ Poster [ Paper PDF
Wed 20 Jul 3:30 p.m. PDT — 5:30 p.m. PDT
Spotlight presentation: DL: Algorithms
Wed 20 Jul 1:30 p.m. PDT — 3 p.m. PDT


Winning lottery tickets refer to sparse subgraphs of deep neural networks which have classification accuracy close to the original dense networks. Resilient connectivity properties of such sparse networks play an important role in their performance. The attempt is to identify a sparse and yet well-connected network to guarantee unhindered information flow. Connectivity in a graph is best characterized by its spectral expansion property. Ramanujan graphs are robust expanders which lead to sparse but highly-connected networks, and thus aid in studying the winning tickets. A feedforward neural network consists of a sequence of bipartite graphs representing its layers. We analyze the Ramanujan graph property of such bipartite layers in terms of their spectral characteristics using the Cheeger’s inequality for irregular graphs. It is empirically observed that the winning ticket networks preserve the Ramanujan graph property and achieve a high accuracy even when the layers are sparse. Accuracy and robustness to noise start declining as many of the layers lose the property. Next we find a robust winning lottery ticket by pruning individual layers while retaining their respective Ramanujan graph property. This strategy is observed to improve the performance of existing network pruning algorithms.

Chat is not available.