Universality of Winning Tickets: A Renormalization Group Perspective

William T. Redman · Tianlong Chen · Zhangyang “Atlas” Wang · Akshunna S. Dogra

Hall E #429

Keywords: [ MISC: Transfer, Multitask and Meta-learning ] [ DL: Algorithms ]

[ Abstract ]
[ Poster [ Paper PDF
Wed 20 Jul 3:30 p.m. PDT — 5:30 p.m. PDT
Spotlight presentation: Deep Learning
Wed 20 Jul 1:30 p.m. PDT — 3 p.m. PDT


Foundational work on the Lottery Ticket Hypothesis has suggested an exciting corollary: winning tickets found in the context of one task can be transferred to similar tasks, possibly even across different architectures. This has generated broad interest, but methods to study this universality are lacking. We make use of renormalization group theory, a powerful tool from theoretical physics, to address this need. We find that iterative magnitude pruning, the principal algorithm used for discovering winning tickets, is a renormalization group scheme, and can be viewed as inducing a flow in parameter space. We demonstrate that ResNet-50 models with transferable winning tickets have flows with common properties, as would be expected from the theory. Similar observations are made for BERT models, with evidence that their flows are near fixed points. Additionally, we leverage our framework to study winning tickets transferred across ResNet architectures, observing that smaller models have flows with more uniform properties than larger models, complicating transfer between them.

Chat is not available.