Skip to yearly menu bar Skip to main content


Poster

Difference Advantage Estimation for Multi-Agent Policy Gradients

yueheng li · Guangming Xie · Zongqing Lu

Hall E #803

Abstract:

Multi-agent policy gradient methods in centralized training with decentralized execution recently witnessed many progresses. During centralized training, multi-agent credit assignment is crucial, which can substantially promote learning performance. However, explicit multi-agent credit assignment in multi-agent policy gradient methods still receives less attention. In this paper, we investigate multi-agent credit assignment induced by reward shaping and provide a theoretical understanding in terms of its credit assignment and policy bias. Based on this, we propose an exponentially weighted advantage estimator, which is analogous to GAE, to enable multi-agent credit assignment while allowing the tradeoff with policy bias. Empirical results show that our approach can successfully perform effective multi-agent credit assignment, and thus substantially outperforms other advantage estimators.

Chat is not available.