Abstract:
We study the problem of designing an adaptive strategy for querying a noisy zeroth-order-oracle to efficiently learn about the optimizer of an unknown function $f$. To make the problem tractable, we assume that $f$ lies in the reproducing kernel Hilbert space (RKHS) associated with a known kernel $K$, with its norm bounded by $M<\infty$. Prior results, working in a \emph{minimax framework}, have characterized the worst-case~(over all functions in the problem class) limits on regret achievable by \emph{any} algorithm, and have constructed algorithms with matching~(modulo polylogarithmic factors) worst-case performance for the Matern family of kernels. These results suffer from two drawbacks. First, the minimax lower bound gives limited information about the limits of regret achievable by commonly used algorithms on a specific problem instance $f$. Second, the existing upper bound analysis fails to adapt to easier problem instances within the function class. Our work takes steps to address both these issues. First, we derive \emph{instance-dependent} regret lower bounds for algorithms with uniformly~(over the function class) vanishing normalized cumulative regret. Our result, valid for several practically relevant kernelized bandits algorithms, such as, GP-UCB, GP-TS and SupKernelUCB, identifies a fundamental complexity measure associated with every problem instance. We then address the second issue, by proposing a new minimax near-optimal algorithm that also adapts to easier problem instances.