Oral
Streaming Algorithm for Monotone k-Submodular Maximization with Cardinality Constraints
Alina Ene · Huy Nguyen
Room 318 - 320
Maximizing a monotone k-submodular function subject to cardinality constraints is a general model for several applications ranging from influence maximization with multiple products to sensor placement with multiple sensor types and online ad allocation. Due to the large problem scale in many applications and the online nature of ad allocation, a need arises for algorithms that process elements in a streaming fashion and possibly make online decisions. In this work, we develop a new streaming algorithm for maximizing a monotone k-submodular function subject to a per-coordinate cardinality constraint attaining an approximation guarantee close to the state of the art guarantee in the offline setting. Though not typical for streaming algorithms, our streaming algorithm also readily applies to the online setting with free disposal. Our algorithm is combinatorial and enjoys fast running time and small number of function evaluations. Furthermore, its guarantee improves as the cardinality constraints get larger, which is especially suited for the large scale applications. For the special case of maximizing a submodular function with large budgets, our combinatorial algorithm matches the guarantee of the state-of-the-art continuous algorithm, which requires significantly more time and function evaluations.