Skip to yearly menu bar Skip to main content


Spotlight
in
Workshop: ICML workshop on Machine Learning for Cybersecurity (ICML-ML4Cyber)

Robustness Evaluation of Deep Unsupervised Learning Algorithms for Intrusion Detection Systems

DJeff KANDA NKASHAMA · Arian Soltani · Jean-Charles Verdier · Marc Frappier · Pierre Martin Tardif · Froduald Kabanza


Abstract:

Recently, advances in deep learning have been observed in various fields, including computer vision, natural language processing, and cybersecurity. Machine learning (ML) has demonstrated its ability as a potential tool for anomaly detection-based intrusion detection systems to build secure computer networks. Increasingly, ML approaches are widely adopted than heuristic approaches for cybersecurity because they learn directly from data. Data is critical for the development of ML systems, and becomes potential targets for attackers. Basically, evasion attacks, also known as adversarial attacks, and data poisoning or contamination, are among the most common techniques used to fool ML models through data. This paper evaluates the robustness of six recent deep learning algorithms for intrusion detection on contaminated data. Our experiments suggest that the state-of-the-art algorithms used in this study are sensitive to data contamination and reveal the importance of self-defense against data perturbation when developing novel models, especially for intrusion detection systems.

Chat is not available.