Learning Switchable Representation with Masked Decoding and Sparse Encoding
Kohei Hayashi · Masanori Koyama
Abstract
In this study, we explore the unsupervised learning based on private/shared factor decomposition, which decomposes the latent space into private factors that vary only in a specific domain the shared factors that vary in all domains. We study when/how we can force the model to respect the true private/shared factor decomposition that underlies the dataset. We show that, when we train a masked decoder and an encoder with sparseness regularization in the latent space, we can identify the true private/shared decomposition up to mixing within each component. We empirically confirm this result and study the efficacy of this training strategy as a representation learning method.
Video
Chat is not available.
Successful Page Load