Sat 9:00 a.m. - 9:05 a.m.
|
Opening Remarks
(
opening
)
>
SlidesLive Video
|
馃敆
|
Sat 9:05 a.m. - 9:50 a.m.
|
Adversarial Examples in Random Deep Networks
(
Invited talk
)
>
SlidesLive Video
|
Peter Bartlett
馃敆
|
Sat 9:50 a.m. - 10:00 a.m.
|
Live Q&A with Peter Bartlett
(
Live Q&A
)
>
|
馃敆
|
Sat 10:00 a.m. - 10:55 a.m.
|
The Polyak-Lojasiewicz condition as a framework for over-parameterized optimization and its application to deep learning
(
Invited talk
)
>
SlidesLive Video
|
Mikhail Belkin
馃敆
|
Sat 10:55 a.m. - 11:10 a.m.
|
Distributional Generalization: A New Kind of Generalization (Extended Abstract)
(
Spotlight
)
>
SlidesLive Video
|
Preetum Nakkiran 路 Yamini Bansal
馃敆
|
Sat 11:10 a.m. - 11:25 a.m.
|
Understanding the effect of sparsity on neural networks robustness
(
Spotlight
)
>
SlidesLive Video
|
Lukas Timpl 路 Rahim Entezari 路 Hanie Sedghi 路 Behnam Neyshabur 路 Olga Saukh
馃敆
|
Sat 11:25 a.m. - 11:40 a.m.
|
On the Generalization Improvement from Neural Network Pruning
(
Spotlight
)
>
SlidesLive Video
|
Tian Jin 路 Gintare Karolina Dziugaite 路 Michael Carbin
馃敆
|
Sat 12:30 p.m. - 1:25 p.m.
|
Overparametrization: Insights from solvable models
(
Invited talk
)
>
SlidesLive Video
|
Lenka Zdeborova
馃敆
|
Sat 1:25 p.m. - 2:20 p.m.
|
The generalization behavior of random feature and neural tangent models
(
Invited talk
)
>
SlidesLive Video
|
Andrea Montanari
馃敆
|
Sat 2:20 p.m. - 2:35 p.m.
|
Towards understanding how momentum improves generalization in deep learning
(
Spotlight
)
>
SlidesLive Video
|
Samy Jelassi 路 Yuanzhi Li
馃敆
|
Sat 2:35 p.m. - 2:50 p.m.
|
Feature Learning in Infinite-Width Neural Networks
(
Spotlight
)
>
SlidesLive Video
|
Greg Yang 路 Edward Hu
馃敆
|
Sat 2:50 p.m. - 3:05 p.m.
|
A Universal Law of Robustness via Isoperimetry
(
Spotlight
)
>
SlidesLive Video
|
Sebastien Bubeck 路 Mark Sellke
馃敆
|
Sat 3:55 p.m. - 4:50 p.m.
|
Universal Prediction Band, Semi-Definite Programming and Variance Interpolation
(
Invited talk
)
>
SlidesLive Video
|
Tengyuan Liang
馃敆
|
Sat 4:50 p.m. - 5:45 p.m.
|
Function space view of Multi-Channel Linear Convolutional Networks with Bounded Weight Norm
(
Invited talk
)
>
SlidesLive Video
|
Suriya Gunasekar
馃敆
|
Sat 5:45 p.m. - 6:00 p.m.
|
Value-Based Deep Reinforcement Learning Requires Explicit Regularization
(
Spotlight
)
>
SlidesLive Video
|
Aviral Kumar 路 Rishabh Agarwal 路 Aaron Courville 路 Tengyu Ma 路 George Tucker 路 Sergey Levine
馃敆
|
Sat 6:00 p.m. - 6:15 p.m.
|
Beyond Implicit Regularization: Avoiding Overfitting via Regularizer Mirror Descent
(
Spotlight
)
>
SlidesLive Video
|
Navid Azizan 路 Sahin Lale 路 Babak Hassibi
馃敆
|
Sat 6:15 p.m. - 6:20 p.m.
|
Closing Remarks
(
closing
)
>
SlidesLive Video
|
馃敆
|
-
|
Generalization Error and Overparameterization While Learning over Networks
(
Poster
)
>
|
Martin Hellkvist 路 Ayca Ozcelikkale
馃敆
|
-
|
On the interplay between data structure and loss function: an analytical study of generalization for classification
(
Poster
)
>
|
St茅phane d'Ascoli 路 Marylou Gabri茅 路 Levent Sagun 路 Giulio Biroli
馃敆
|
-
|
Finite-Sample Analysis of Interpolating Linear Classifiers in the Overparameterized Regime
(
Poster
)
>
|
Niladri Chatterji 路 Phil Long
馃敆
|
-
|
Some samples are more similar than others! A different look at memorization and generalization in neural networks.
(
Poster
)
>
|
Sudhanshu Ranjan
馃敆
|
-
|
When does gradient descent with logistic loss interpolate using deep networks with smoothed ReLU activations?
(
Poster
)
>
|
Niladri Chatterji 路 Phil Long 路 Peter Bartlett
馃敆
|
-
|
On Alignment in Deep Linear Neural Networks
(
Poster
)
>
|
Adityanarayanan Radhakrishnan 路 Eshaan Nichani 路 Daniel Bernstein 路 Caroline Uhler
馃敆
|
-
|
Increasing Depth Leads to U-Shaped Test Risk in Over-parameterized Convolutional Networks
(
Poster
)
>
|
Eshaan Nichani 路 Adityanarayanan Radhakrishnan 路 Caroline Uhler
馃敆
|
-
|
How does Over-Parametrization Lead to Acceleration for Learning a Single Teacher Neuron with Quadratic Activation?
(
Poster
)
>
|
Jun-Kun Wang 路 Jacob Abernethy
馃敆
|
-
|
Empirical Study on the Effective VC Dimension of Low-rank Neural Networks
(
Poster
)
>
|
Daewon Seo 路 Hongyi Wang 路 Dimitris Papailiopoulos 路 Kangwook Lee
馃敆
|
-
|
Benign Overfitting in Adversarially Robust Linear Classification
(
Poster
)
>
|
Jinghui Chen 路 Yuan Cao 路 Yuan Cao 路 Quanquan Gu
馃敆
|
-
|
Mitigating deep double descent by concatenating inputs
(
Poster
)
>
|
John Chen 路 Qihan Wang 路 Anastasios Kyrillidis
馃敆
|
-
|
Robust Generalization of Quadratic Neural Networks via Function Identification
(
Poster
)
>
|
Kan Xu 路 Hamsa Bastani 路 Osbert Bastani
馃敆
|
-
|
Label Noise SGD Provably Prefers Flat Global Minimizers
(
Poster
)
>
|
Alex Damian 路 Tengyu Ma 路 Jason Lee
馃敆
|
-
|
On the Origins of the Block Structure Phenomenon in Neural Network Representations
(
Poster
)
>
|
Thao Nguyen 路 Maithra Raghu 路 Simon Kornblith
馃敆
|
-
|
Structured Model Pruning of Convolutional Networks on Tensor Processing Units
(
Poster
)
>
|
Kongtao Chen
馃敆
|
-
|
Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation
(
Poster
)
>
|
Ke Wang 路 Vidya Muthukumar 路 Christos Thrampoulidis
馃敆
|
-
|
Inductive Bias of Multi-Channel Linear Convolutional Networks with Bounded Weight Norm
(
Poster
)
>
|
Meena Jagadeesan 路 Ilya Razenshteyn 路 Suriya Gunasekar
馃敆
|
-
|
Sample Complexity and Overparameterization Bounds for Temporal Difference Learning with Neural Network Approximation
(
Poster
)
>
|
Semih Cayci 路 Siddhartha Satpathi 路 Niao He 路 R Srikant
馃敆
|
-
|
Double Descent in Feature Selection: Revisiting LASSO and Basis Pursuit
(
Poster
)
>
|
David Bosch 路 Ashkan Panahi 路 Ayca Ozcelikkale
馃敆
|
-
|
On Low Rank Training of Deep Neural Networks
(
Poster
)
>
|
Siddhartha Kamalakara 路 Acyr Locatelli 路 Bharat Venkitesh 路 Jimmy Ba 路 Yarin Gal 路 Aidan Gomez
馃敆
|
-
|
On the Sparsity of Deep Neural Networks in the Overparameterized Regime: An Empirical Study
(
Poster
)
>
|
Rahul Parhi 路 Jack Wolf 路 Robert Nowak
馃敆
|
-
|
Implicit Acceleration and Feature Learning in Infinitely Wide Neural Networks with Bottlenecks
(
Poster
)
>
|
Etai Littwin 路 Omid Saremi 路 Shuangfei Zhai 路 Vimal Thilak 路 Hanlin Goh 路 Joshua M Susskind 路 Greg Yang
馃敆
|
-
|
Classification and Adversarial Examples in an Overparameterized Linear Model: A Signal-Processing Perspective
(
Poster
)
>
|
Adhyyan Narang 路 Vidya Muthukumar 路 Anant Sahai
馃敆
|
-
|
Gradient Starvation: A Learning Proclivity in Neural Networks
(
Poster
)
>
|
Mohammad Pezeshki 路 S茅kou-Oumar Kaba 路 Yoshua Bengio 路 Aaron Courville 路 Doina Precup 路 Guillaume Lajoie
馃敆
|
-
|
Studying the Consistency and Composability of Lottery Ticket Pruning Masks
(
Poster
)
>
|
Rajiv Movva 路 Michael Carbin 路 Jonathan Frankle
馃敆
|
-
|
Epoch-Wise Double Descent: A Theory of Multi-scale Feature Learning Dynamics
(
Poster
)
>
|
Mohammad Pezeshki 路 Amartya Mitra 路 Yoshua Bengio 路 Guillaume Lajoie
馃敆
|
-
|
Implicit Greedy Rank Learning in Autoencoders via Overparameterized Linear Networks
(
Poster
)
>
|
Shih-Yu Sun 路 Vimal Thilak 路 Etai Littwin 路 Omid Saremi 路 Joshua M Susskind
馃敆
|
-
|
Assessing Generalization of SGD via Disagreement Rates
(
Poster
)
>
|
YiDing Jiang 路 Vaishnavh Nagarajan 路 Zico Kolter
馃敆
|
-
|
Risk Bounds for Over-parameterized Maximum Margin Classification on Sub-Gaussian Mixtures
(
Poster
)
>
|
Yuan Cao 路 Yuan Cao 路 Quanquan Gu 路 Mikhail Belkin
馃敆
|
-
|
Rethinking compactness in deep neural networks
(
Poster
)
>
|
Kateryna Chumachenko 路 Firas Laakom 路 Jenni Raitoharju 路 Alexandros Iosifidis 路 Moncef Gabbouj
馃敆
|
-
|
Overfitting of Polynomial Regression with Overparameterization
(
Poster
)
>
|
Hugo Fabregues 路 Berfin Simsek
馃敆
|
-
|
On the memorization properties of contrastive learning
(
Poster
)
>
|
Ildus Sadrtdinov 路 Nadezhda Chirkova 路 Ekaterina Lobacheva
馃敆
|
-
|
Over-Parameterization and Generalization in Audio Classification
(
Poster
)
>
|
Khaled Koutini 路 Khaled Koutini 路 Hamid Eghbalzadeh 路 Florian Henkel 路 Jan Schl眉ter 路 Gerhard Widmer
馃敆
|
-
|
Surprising benefits of ridge regularization for noiseless regression
(
Poster
)
>
|
Konstantin Donhauser 路 Alexandru Tifrea 路 Michael Aerni 路 Reinhard Heckel 路 Fanny Yang
馃敆
|
-
|
Binary Classification of Gaussian Mixtures: Abundance of Support Vectors, Benign Overfitting and Regularization
(
Poster
)
>
|
Ke Wang 路 Christos Thrampoulidis
馃敆
|
-
|
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
(
Poster
)
>
|
Ganesh Ramachandra Kini 路 Orestis Paraskevas 路 Samet Oymak 路 Christos Thrampoulidis
馃敆
|
-
|
Early-stopped neural networks are consistent
(
Poster
)
>
|
Ziwei Ji 路 Matus Telgarsky
馃敆
|
-
|
Distributional Generalization: A New Kind of Generalization (Extended Abstract)
(
Poster
)
>
|
Preetum Nakkiran 路 Yamini Bansal
馃敆
|
-
|
Feature Learning in Infinite-Width Neural Networks
(
Poster
)
>
|
Greg Yang 路 Edward Hu
馃敆
|
-
|
On the Generalization Improvement from Neural Network Pruning
(
Poster
)
>
|
Tian Jin 路 Gintare Karolina Dziugaite 路 Michael Carbin
馃敆
|
-
|
A Universal Law of Robustness via Isoperimetry
(
Poster
)
>
|
Sebastien Bubeck 路 Mark Sellke
馃敆
|
-
|
Understanding the effect of sparsity on neural networks robustness
(
Poster
)
>
|
Lukas Timpl 路 Rahim Entezari 路 Hanie Sedghi 路 Behnam Neyshabur 路 Olga Saukh
馃敆
|
-
|
Beyond Implicit Regularization: Avoiding Overfitting via Regularizer Mirror Descent
(
Poster
)
>
|
Navid Azizan 路 Sahin Lale 路 Babak Hassibi
馃敆
|
-
|
Value-Based Deep Reinforcement Learning Requires Explicit Regularization
(
Poster
)
>
|
Aviral Kumar 路 Rishabh Agarwal 路 Aaron Courville 路 Tengyu Ma 路 George Tucker 路 Sergey Levine
馃敆
|
-
|
Towards understanding how momentum improves generalization in deep learning
(
Poster
)
>
|
Samy Jelassi 路 Yuanzhi Li
馃敆
|