Assessing Generalization of SGD via Disagreement Rates
Abstract
We empirically show that the test error of deep networks can be estimated simply by training the same architecture on the same training set but with a different run of SGD, and measuring the disagreement rate between the two networks on unlabeled test data. This builds on -- and is a stronger version of -- the observation in Nakirran & Bansal (20), which requires the second run to be on an altogether fresh training set. We further theoretically show that this peculiar phenomenon arises from the well-calibrated nature of ensembles of SGD-trained models. This finding not only provides a simple empirical measure to directly predict the test error using unlabeled test data, but also establishes a new conceptual connection between generalization and calibration.