Workshop
Reinforcement Learning for Real Life
Yuxi Li 路 Minmin Chen 路 Omer Gottesman 路 Lihong Li 路 Zongqing Lu 路 Rupam Mahmood 路 Niranjani Prasad 路 Zhiwei (Tony) Qin 路 Csaba Szepesvari 路 Matthew Taylor
Fri 23 Jul, 6 a.m. PDT
Reinforcement learning (RL) is a general learning, predicting, and decision making paradigm and applies broadly in many disciplines, including science, engineering and humanities. RL has seen prominent successes in many problems, such as games, robotics, recommender systems. However, applying RL in the real world remains challenging, and a natural question is:
Why isn鈥檛 RL used even more often and how can we improve this?
The main goals of the workshop are to: (1) identify key research problems that are critical for the success of real-world applications; (2) report progress on addressing these critical issues; and (3) have practitioners share their success stories of applying RL to real-world problems, and the insights gained from such applications.
We invite paper submissions successfully applying RL algorithms to real-life problems and/or addressing practically relevant RL issues. Our topics of interest are general, including (but not limited to): 1) practical RL algorithms, which covers all algorithmic challenges of RL, especially those that directly address challenges faced by real-world applications; 2) practical issues: generalization, sample efficiency, exploration, reward, scalability, model-based learning, prior knowledge, safety, accountability, interpretability, reproducibility, hyper-parameter tuning; and 3) applications.
We have 6 premier panel discussions and 70+ great papers/posters. Welcome!
Schedule
Fri 6:00 a.m. - 8:00 a.m.
|
Poster Session ( Poster Session ) > link | 馃敆 |
Fri 8:00 a.m. - 9:00 a.m.
|
RL Foundation Panel
(
Panel Discussion
)
>
SlidesLive Video |
Matthew Botvinick 路 Thomas Dietterich 路 Leslie Kaelbling 路 John Langford 路 Warrren B Powell 路 Csaba Szepesvari 路 Lihong Li 路 Yuxi Li 馃敆 |
Fri 9:00 a.m. - 10:00 a.m.
|
RL Explainability & Interpretability Panel
(
Panel Discussion
)
>
SlidesLive Video |
Ofra Amir 路 Finale Doshi-Velez 路 Alan Fern 路 Zachary Lipton 路 Omer Gottesman 路 Niranjani Prasad 馃敆 |
Fri 10:00 a.m. - 11:00 a.m.
|
RL + Robotics Panel
(
Panel Discussion
)
>
SlidesLive Video |
George Konidaris 路 Jan Peters 路 Martin Riedmiller 路 Angela Schoellig 路 Rose Yu 路 Rupam Mahmood 馃敆 |
Fri 11:00 a.m. - 3:00 p.m.
|
Break
|
馃敆 |
Fri 3:00 p.m. - 4:00 p.m.
|
RL + Recommender Systems Panel
(
Panel Discussion
)
>
SlidesLive Video |
Alekh Agarwal 路 Ed Chi 路 Maria Dimakopoulou 路 Georgios Theocharous 路 Minmin Chen 路 Lihong Li 馃敆 |
Fri 4:00 p.m. - 5:00 p.m.
|
Spotlight
(
Spotlight
)
>
SlidesLive Video |
12 presentersZhiwei (Tony) Qin 路 Xianyuan Zhan 路 Meng Qi 路 Ruihan Yang 路 Philip Ball 路 Hamsa Bastani 路 Yao Liu 路 Xiuwen Wang 路 Haoran Xu 路 Tony Z. Zhao 路 Lili Chen 路 Aviral Kumar |
Fri 5:00 p.m. - 6:00 p.m.
|
RL Research-to-RealLife Gap Panel
(
Panel Discussion
)
>
SlidesLive Video |
Craig Buhr 路 Jeff Mendenhall 路 Yang Yu 路 Matthew Taylor 馃敆 |
Fri 7:00 p.m. - 8:00 p.m.
|
RL + Operations Research Panel
(
Panel Discussion
)
>
SlidesLive Video |
Jim Dai 路 Fei Fang 路 Shie Mannor 路 Yuandong Tian 路 Zhiwei (Tony) Qin 路 Zongqing Lu 馃敆 |
Fri 8:00 p.m. - 10:00 p.m.
|
Poster Session ( Poster Session ) > link | 馃敆 |
Fri 10:00 p.m. - 10:00 p.m.
|
Workshop ends
|
馃敆 |
-
|
DeepThermal: Combustion Optimization for Thermal Power Generating Units Using Offline Reinforcement Learning
(
Poster
)
>
|
Xianyuan Zhan 路 Haoran Xu 路 Yue Zhang 路 Xiangyu Zhu 路 Honglei Yin 馃敆 |
-
|
Neural Rate Control for Video Encoding using Imitation Learning
(
Poster
)
>
|
12 presentersHongzi Mao 路 Chenjie Gu 路 Miaosen Wang 路 Angie Chen 路 Nevena Lazic 路 Nir Levine 路 Derek Pang 路 Rene Claus 路 Marisabel Hechtman 路 Ching-Han Chiang 路 Cheng Chen 路 Jingning Han |
-
|
Reinforcement Learning for (Mixed) Integer Programming: Smart Feasibility Pump
(
Poster
)
>
|
Mengxin Wang 路 Meng Qi 路 Zuo-Jun Shen 馃敆 |
-
|
Continuous Doubly Constrained Batch Reinforcement Learning
(
Poster
)
>
|
Rasool Fakoor 路 Jonas Mueller 路 Kavosh Asadi 路 Pratik Chaudhari 路 Alex Smola 馃敆 |
-
|
Contingency-Aware Influence Maximization: A Reinforcement Learning Approach
(
Poster
)
>
|
Haipeng Chen 路 Wei Qiu 路 Han-Ching Ou 路 Bo An 路 Milind Tambe 馃敆 |
-
|
On the Difficulty of Generalizing Reinforcement Learning Framework for Combinatorial Optimization
(
Poster
)
>
|
Mostafa Pashazadeh 路 Kui Wu 馃敆 |
-
|
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model
(
Poster
)
>
|
Haruka Kiyohara 路 Yuta Saito 路 Tatsuya Matsuhiro 路 Yusuke Narita 路 Nobuyuki Shimizu 路 Yasuo Yamamoto 馃敆 |
-
|
OffWorld Gym: Open-Access Physical Robotics Environment for Real-World Reinforcement Learning Benchmark and Research
(
Poster
)
>
|
Ashish Kumar 路 Toby Buckley 路 John Lanier 路 Qiaozhi Wang 路 Alicia Kavelaars 路 Ilya Kuzovkin 馃敆 |
-
|
Learning Barrier Certificates: Towards Safe Reinforcement Learning with Zero Training-time Violations
(
Poster
)
>
|
Yuping Luo 路 Tengyu Ma 馃敆 |
-
|
Automatic Risk Adaptation in Distributional Reinforcement Learning
(
Poster
)
>
|
Frederik Schubert 路 Theresa Eimer 路 Bodo Rosenhahn 路 Marius Lindauer 馃敆 |
-
|
Coordinate-wise Control Variates for Deep Policy Gradients
(
Poster
)
>
|
Yuanyi Zhong 路 Yuan Zhou 路 Jian Peng 馃敆 |
-
|
Disentangled Attention as Intrinsic Regularization for Bimanual Multi-Object Manipulation
(
Poster
)
>
|
Minghao Zhang 路 Pingcheng Jian 路 Yi Wu 路 Harry (Huazhe) Xu 路 Xiaolong Wang 馃敆 |
-
|
Learning Vision-Guided Quadrupedal Locomotionwith Cross-Modal Transformers
(
Poster
)
>
|
Ruihan Yang 路 Minghao Zhang 路 Nicklas Hansen 路 Harry (Huazhe) Xu 路 Xiaolong Wang 馃敆 |
-
|
Graph Neural Network Reinforcement Learning for Autonomous Mobility-on-Demand Systems
(
Poster
)
>
|
Daniele Gammelli 路 Kaidi Yang 路 James Harrison 路 Filipe Rodrigues 路 Francisco Pereira 路 Marco Pavone 馃敆 |
-
|
Reward-Free Attacks in Multi-Agent Reinforcement Learning
(
Poster
)
>
|
Ted Fujimoto 路 Tim Doster 路 Adam Attarian 路 Jill Brandenberger 路 Nathan Hodas 馃敆 |
-
|
Evaluating the progress of Deep Reinforcement Learning in the real world: aligning domain-agnostic and domain-specific research
(
Poster
)
>
|
Juan Jose Garau Luis 路 Edward Crawley 路 Bruce Cameron 馃敆 |
-
|
Corruption Robust Offline Reinforcement Learning
(
Poster
)
>
|
Xuezhou Zhang 路 Yiding Chen 路 Jerry Zhu 路 Wen Sun 馃敆 |
-
|
Deep Reinforcement Learning for 3D Furniture Layout in Indoor Graphic Scenes
(
Poster
)
>
|
xinhan di 路 Pengqian Yu 馃敆 |
-
|
Learning to Represent State with Perceptual Schemata
(
Poster
)
>
|
Wilka Carvalho 路 Murray Shanahan 馃敆 |
-
|
Continual Meta Policy Search for Sequential Multi-Task Learning
(
Poster
)
>
|
Glen Berseth 路 Zhiwei Zhang 馃敆 |
-
|
Reinforcement Learning as One Big Sequence Modeling Problem
(
Poster
)
>
|
Michael Janner 路 Qiyang Li 路 Sergey Levine 馃敆 |
-
|
Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap
(
Poster
)
>
|
Gokul Swamy 路 Sanjiban Choudhury 路 J. Bagnell 路 Steven Wu 馃敆 |
-
|
Learning Space Partitions for Path Planning
(
Poster
)
>
|
Kevin Yang 路 Tianjun Zhang 路 Chris Cummins 路 Brandon Cui 路 Benoit Steiner 路 Linnan Wang 路 Joseph E Gonzalez 路 Dan Klein 路 Yuandong Tian 馃敆 |
-
|
ReLMM: Practical RL for Learning Mobile Manipulation Skills Using Only Onboard Sensors
(
Poster
)
>
|
Charles Sun 路 Jedrzej Orbik 路 Coline Devin 路 Abhishek Gupta 路 Glen Berseth 路 Sergey Levine 馃敆 |
-
|
Representation Learning for Out-of-distribution Generalization in Downstream Tasks
(
Poster
)
>
|
Frederik Tr盲uble 路 Andrea Dittadi 路 Manuel W眉thrich 路 Felix Widmaier 路 Peter Gehler 路 Ole Winther 路 Francesco Locatello 路 Olivier Bachem 路 Bernhard Sch枚lkopf 路 Stefan Bauer 馃敆 |
-
|
Symbolic Relational Deep Reinforcement Learning based on Graph Neural Networks
(
Poster
)
>
|
Jarom铆r Janisch 路 Tomas Pevny 路 Viliam Lisy 馃敆 |
-
|
Hierarchical Multiple-Instance Data Classification with Costly Features
(
Poster
)
>
|
Jarom铆r Janisch 路 Tomas Pevny 路 Viliam Lisy 馃敆 |
-
|
Multi-agent Deep Covering Option Discovery
(
Poster
)
>
|
Jiayu Chen 路 Marina W Haliem 路 Tian Lan 路 Vaneet Aggarwal 馃敆 |
-
|
Efficient Exploration by HyperDQN in Deep Reinforcement Learning
(
Poster
)
>
|
Ziniu Li 路 Yingru Li 路 Hao Liang 路 Tong Zhang 馃敆 |
-
|
Revisiting Design Choices in Offline Model Based Reinforcement Learning
(
Poster
)
>
|
Cong Lu 路 Philip Ball 路 Jack Parker-Holder 路 Michael A Osborne 路 Stephen Roberts 馃敆 |
-
|
De novo drug design using reinforcement learning with graph-based deep generative models
(
Poster
)
>
|
Sara Romeo Atance 路 Ola Engkvist 路 Simon Olsson 路 Roc铆o Mercado 馃敆 |
-
|
Optimization of high precision manufacturing by Monte Carlo Tree Search
(
Poster
)
>
|
Dorina Weichert 路 Alexander Kister 馃敆 |
-
|
Designing Online Advertisements via Bandit and Reinforcement Learning
(
Poster
)
>
|
Richard Liu 路 Yusuke Narita 路 Kohei Yata 馃敆 |
-
|
Semantic Tracklets: An Object-Centric Representation for Visual Multi-Agent Reinforcement Learning
(
Poster
)
>
|
Iou-Jen Liu 路 Zhongzheng Ren 路 Raymond Yeh 路 Alex Schwing 馃敆 |
-
|
Model Selection for Offline Reinforcement Learning: Practical Considerations for Healthcare Settings
(
Poster
)
>
|
Shengpu Tang 路 Jenna Wiens 馃敆 |
-
|
Offline Reinforcement Learning as Anti-Exploration
(
Poster
)
>
|
Shideh Rezaeifar 路 Robert Dadashi 路 Nino Vieillard 路 L茅onard Hussenot 路 Olivier Bachem 路 Olivier Pietquin 路 Matthieu Geist 馃敆 |
-
|
What Can I Do Here? Learning New Skills by Imagining Visual Affordances
(
Poster
)
>
|
Khazatsky Alexander 路 Ashvin Nair 馃敆 |
-
|
IV-RL: Leveraging Target Uncertainty Estimation for Sample Efficiency in Deep Reinforcement Learning
(
Poster
)
>
|
Vincent Mai 路 Kaustubh Mani 路 Liam Paull 馃敆 |
-
|
Learning a Markov Model for evaluating Soccer Decision Making
(
Poster
)
>
|
Maaike Van Roy 路 Pieter Robberechts 路 Wen-Chi Yang 路 Luc De Raedt 路 Jesse Davis 馃敆 |
-
|
Topological Experience Replay for Fast Q-Learning
(
Poster
)
>
|
Zhang-Wei Hong 路 Tao Chen 路 Yen-Chen Lin 路 Joni Pajarinen 路 Pulkit Agrawal 馃敆 |
-
|
AppBuddy: Learning to Accomplish Tasks in Mobile Apps via Reinforcement Learning
(
Poster
)
>
|
Maayan Shvo 路 Zhiming Hu 路 Rodrigo A Toro Icarte 路 Iqbal Mohomed 路 Allan Jepson 路 Sheila McIlraith 馃敆 |
-
|
Reward Shaping for User Satisfaction in a REINFORCE Recommender
(
Poster
)
>
|
12 presentersKonstantina Christakopoulou 路 Can Xu 路 Sai Zhang 路 Sriraj Badam 路 Daniel Li 路 Hao Wan 路 Xinyang Yi 路 Ya Le 路 Chris Berg 路 Eric Bencomo Dixon 路 Ed Chi 路 Minmin Chen |
-
|
Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks
(
Poster
)
>
|
Yijie Guo 路 Qiucheng Wu 路 Honglak Lee 馃敆 |
-
|
Mind the Gap: Safely Bridging Offline and Online Reinforcement Learning
(
Poster
)
>
|
Wanqiao Xu 路 Kan Xu 路 Hamsa Bastani 路 Osbert Bastani 馃敆 |
-
|
Deploying a Machine Learning System for COVID-19 Testing in Greece
(
Poster
)
>
|
Hamsa Bastani 路 Kimon Drakopoulos 路 Vishal Gupta 馃敆 |
-
|
The Reflective Explorer: Online Meta-Exploration from Offline Data in Visual Tasks with Sparse Rewards
(
Poster
)
>
|
Rafael Rafailov 路 Varun Kumar 路 Tianhe (Kevin) Yu 路 Avi Singh 路 mariano phielipp 路 Chelsea Finn 馃敆 |
-
|
Improving Human Decision-Making with Machine Learning
(
Poster
)
>
|
Hamsa Bastani 路 Osbert Bastani 路 Wichinpong Sinchaisri 馃敆 |
-
|
Avoiding Overfitting to the Importance Weights in Offline Policy Optimization
(
Poster
)
>
|
Yao Liu 路 Emma Brunskill 馃敆 |
-
|
Towards Reinforcement Learning for Pivot-based Neural Machine Translation with Non-autoregressive Transformer
(
Poster
)
>
|
Evgeniia Tokarchuk 路 Jan Rosendahl 路 Weiyue Wang 路 Pavel Petrushkov 路 Tomer Lancewicki 路 Shahram Khadivi 路 Hermann Ney 馃敆 |
-
|
Data-Pooling Reinforcement Learning for Personalized Healthcare Intervention
(
Poster
)
>
|
Xinyun Chen 路 Pengyi Shi 馃敆 |
-
|
Mitigating Covariate Shift in Imitation Learning via Offline Data Without Great Coverage
(
Poster
)
>
|
Jonathan Chang 路 Masatoshi Uehara 路 Dhruv Sreenivas 路 Rahul Kidambi 路 Wen Sun 馃敆 |
-
|
MobILE: Model-Based Imitation Learning From Observation Alone
(
Poster
)
>
|
Rahul Kidambi 路 Jonathan Chang 路 Wen Sun 馃敆 |
-
|
Objective Robustness in Deep Reinforcement Learning
(
Poster
)
>
|
Lauro Langosco di Langosco 路 Lee Sharkey 馃敆 |
-
|
Is Bang-Bang Control All You Need?
(
Poster
)
>
|
Tim Seyde 路 Igor Gilitschenski 路 Wilko Schwarting 路 Bartolomeo Stellato 路 Martin Riedmiller 路 Markus Wulfmeier 路 Daniela Rus 馃敆 |
-
|
Off-Policy Evaluation with General Logging Policies
(
Poster
)
>
|
Kyohei Okumura 路 Yusuke Narita 路 Kohei Yata 路 Akihiro Shimizu 馃敆 |
-
|
Safe Deep Reinforcement Learning for Multi-Agent Systems with Continuous Action Spaces
(
Poster
)
>
|
Athina Nisioti 路 Dario Pavllo 路 Jonas Kohler 馃敆 |
-
|
Reinforcement Learning with Logical Action-Aware Features for Polymer Discovery
(
Poster
)
>
|
Sarath Swaminathan 路 Dmitry Zubarev 路 Subhajit Chaudhury 路 Asim Munawar 馃敆 |
-
|
Constraints Penalized Q-Learning for Safe Offline Reinforcement Learning
(
Poster
)
>
|
Haoran Xu 路 Xianyuan Zhan 路 Xiangyu Zhu 馃敆 |
-
|
ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal Control
(
Poster
)
>
|
Xingshuai Huang 路 di wu 路 Benoit Boulet 馃敆 |
-
|
Robust Risk-Sensitive Reinforcement Learning Agents for Trading Markets
(
Poster
)
>
|
Yue Gao 路 Pablo Hernandez-Leal 路 Kry Yik Chau Lui 馃敆 |
-
|
Automating Power Networks: Improving RL Agent Robustness with Adversarial Training
(
Poster
)
>
|
Alexander Pan 路 Yongkyun Lee 路 Huan Zhang 馃敆 |
-
|
Understanding the Generalization Gap in Visual Reinforcement Learning
(
Poster
)
>
|
Anurag Ajay 路 Ge Yang 路 Ofir Nachum 路 Pulkit Agrawal 馃敆 |
-
|
Optimizing Dynamic Treatment Regimes via Volatile Contextual Gaussian Process Bandits
(
Poster
)
>
|
Ahmet Alparslan Celik 路 Cem Tekin 馃敆 |
-
|
Reset-Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human Intervention
(
Poster
)
>
|
Abhishek Gupta 路 Justin Yu 路 Tony Z. Zhao 路 Vikash Kumar 路 Aaron Rovinsky 路 Kelvin Xu 路 Thomas Devlin 路 Sergey Levine 馃敆 |
-
|
Attend2Pack: Bin Packing through Deep Reinforcement Learning with Attention
(
Poster
)
>
|
Jingwei Zhang 路 Bin Zi 路 Xiaoyu Ge 馃敆 |
-
|
Designing Interpretable Approximations to Deep Reinforcement Learning
(
Poster
)
>
|
Nathan Dahlin 路 Rahul Jain 路 Pierluigi Nuzzo 路 Krishna Kalagarla 路 Nikhil Naik 馃敆 |
-
|
Decision Transformer: Reinforcement Learning via Sequence Modeling
(
Poster
)
>
|
Lili Chen 路 Kevin Lu 路 Aravind Rajeswaran 路 Kimin Lee 路 Aditya Grover 路 Michael Laskin 路 Pieter Abbeel 路 Aravind Srinivas 路 Igor Mordatch 馃敆 |
-
|
Multi-Task Offline Reinforcement Learning with Conservative Data Sharing
(
Poster
)
>
|
Tianhe (Kevin) Yu 路 Aviral Kumar 路 Yevgen Chebotar 路 Karol Hausman 路 Sergey Levine 路 Chelsea Finn 馃敆 |
-
|
Value-Based Deep Reinforcement Learning Requires Explicit Regularization
(
Poster
)
>
|
Aviral Kumar 路 Rishabh Agarwal 路 Aaron Courville 路 Tengyu Ma 路 George Tucker 路 Sergey Levine 馃敆 |
-
|
A Policy Efficient Reduction Approach to Convex Constrained Deep Reinforcement Learning
(
Poster
)
>
|
Tianchi Cai 路 Wenpeng Zhang 路 Lihong Gu 路 Xiaodong Zeng 路 Jinjie Gu 馃敆 |
-
|
Hierarchical Imitation Learning with Contextual Bandits for DynamicTreatment Regimes
(
Poster
)
>
|
Lu Wang 路 Wenchao Yu 路 Wei Cheng 路 Bo Zong 路 Haifeng Chen 馃敆 |
-
|
Reinforcement Learning Agent Training with Goals for Real World Tasks
(
Poster
)
>
|
Xuan Zhao 馃敆 |
-
|
RRL: Resnet as representation for Reinforcement Learning
(
Poster
)
>
|
Rutav Shah 路 Vikash Kumar 馃敆 |
-
|
The MineRL Competitions at NeurIPS 2021
(
Poster
)
>
|
Cody Wild 路 Stephanie Milani 馃敆 |
-
|
IGLU: Interactive Grounded Language Understanding in a Collaborative Environment
(
Poster
)
>
|
Julia Kiseleva 路 Julia Kiseleva 馃敆 |