Workshop
Reinforcement Learning for Real Life
Yuxi Li · Minmin Chen · Omer Gottesman · Lihong Li · Zongqing Lu · Rupam Mahmood · Niranjani Prasad · Zhiwei (Tony) Qin · Csaba Szepesvari · Matthew Taylor
Fri 23 Jul, 6 a.m. PDT
Reinforcement learning (RL) is a general learning, predicting, and decision making paradigm and applies broadly in many disciplines, including science, engineering and humanities. RL has seen prominent successes in many problems, such as games, robotics, recommender systems. However, applying RL in the real world remains challenging, and a natural question is:
Why isn’t RL used even more often and how can we improve this?
The main goals of the workshop are to: (1) identify key research problems that are critical for the success of real-world applications; (2) report progress on addressing these critical issues; and (3) have practitioners share their success stories of applying RL to real-world problems, and the insights gained from such applications.
We invite paper submissions successfully applying RL algorithms to real-life problems and/or addressing practically relevant RL issues. Our topics of interest are general, including (but not limited to): 1) practical RL algorithms, which covers all algorithmic challenges of RL, especially those that directly address challenges faced by real-world applications; 2) practical issues: generalization, sample efficiency, exploration, reward, scalability, model-based learning, prior knowledge, safety, accountability, interpretability, reproducibility, hyper-parameter tuning; and 3) applications.
We have 6 premier panel discussions and 70+ great papers/posters. Welcome!
Schedule
Fri 6:00 a.m. - 8:00 a.m.
|
Poster Session ( Poster Session ) > link | 🔗 |
Fri 8:00 a.m. - 9:00 a.m.
|
RL Foundation Panel
(
Panel Discussion
)
>
SlidesLive Video |
Matthew Botvinick · Thomas Dietterich · Leslie Kaelbling · John Langford · Warrren B Powell · Csaba Szepesvari · Lihong Li · Yuxi Li 🔗 |
Fri 9:00 a.m. - 10:00 a.m.
|
RL Explainability & Interpretability Panel
(
Panel Discussion
)
>
SlidesLive Video |
Ofra Amir · Finale Doshi-Velez · Alan Fern · Zachary Lipton · Omer Gottesman · Niranjani Prasad 🔗 |
Fri 10:00 a.m. - 11:00 a.m.
|
RL + Robotics Panel
(
Panel Discussion
)
>
SlidesLive Video |
George Konidaris · Jan Peters · Martin Riedmiller · Angela Schoellig · Rose Yu · Rupam Mahmood 🔗 |
Fri 11:00 a.m. - 3:00 p.m.
|
Break
|
🔗 |
Fri 3:00 p.m. - 4:00 p.m.
|
RL + Recommender Systems Panel
(
Panel Discussion
)
>
SlidesLive Video |
Alekh Agarwal · Ed Chi · Maria Dimakopoulou · Georgios Theocharous · Minmin Chen · Lihong Li 🔗 |
Fri 4:00 p.m. - 5:00 p.m.
|
Spotlight
(
Spotlight
)
>
SlidesLive Video |
12 presentersZhiwei (Tony) Qin · Xianyuan Zhan · Meng Qi · Ruihan Yang · Philip Ball · Hamsa Bastani · Yao Liu · Xiuwen Wang · Haoran Xu · Tony Z. Zhao · Lili Chen · Aviral Kumar |
Fri 5:00 p.m. - 6:00 p.m.
|
RL Research-to-RealLife Gap Panel
(
Panel Discussion
)
>
SlidesLive Video |
Craig Buhr · Jeff Mendenhall · Yang Yu · Matthew Taylor 🔗 |
Fri 7:00 p.m. - 8:00 p.m.
|
RL + Operations Research Panel
(
Panel Discussion
)
>
SlidesLive Video |
Jim Dai · Fei Fang · Shie Mannor · Yuandong Tian · Zhiwei (Tony) Qin · Zongqing Lu 🔗 |
Fri 8:00 p.m. - 10:00 p.m.
|
Poster Session ( Poster Session ) > link | 🔗 |
Fri 10:00 p.m. - 10:00 p.m.
|
Workshop ends
|
🔗 |
-
|
DeepThermal: Combustion Optimization for Thermal Power Generating Units Using Offline Reinforcement Learning
(
Poster
)
>
|
Xianyuan Zhan · Haoran Xu · Yue Zhang · Xiangyu Zhu · Honglei Yin 🔗 |
-
|
Neural Rate Control for Video Encoding using Imitation Learning
(
Poster
)
>
|
12 presentersHongzi Mao · Chenjie Gu · Miaosen Wang · Angie Chen · Nevena Lazic · Nir Levine · Derek Pang · Rene Claus · Marisabel Hechtman · Ching-Han Chiang · Cheng Chen · Jingning Han |
-
|
Reinforcement Learning for (Mixed) Integer Programming: Smart Feasibility Pump
(
Poster
)
>
|
Mengxin Wang · Meng Qi · Zuo-Jun Shen 🔗 |
-
|
Continuous Doubly Constrained Batch Reinforcement Learning
(
Poster
)
>
|
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alex Smola 🔗 |
-
|
Contingency-Aware Influence Maximization: A Reinforcement Learning Approach
(
Poster
)
>
|
Haipeng Chen · Wei Qiu · Han-Ching Ou · Bo An · Milind Tambe 🔗 |
-
|
On the Difficulty of Generalizing Reinforcement Learning Framework for Combinatorial Optimization
(
Poster
)
>
|
Mostafa Pashazadeh · Kui Wu 🔗 |
-
|
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model
(
Poster
)
>
|
Haruka Kiyohara · Yuta Saito · Tatsuya Matsuhiro · Yusuke Narita · Nobuyuki Shimizu · Yasuo Yamamoto 🔗 |
-
|
OffWorld Gym: Open-Access Physical Robotics Environment for Real-World Reinforcement Learning Benchmark and Research
(
Poster
)
>
|
Ashish Kumar · Toby Buckley · John Lanier · Qiaozhi Wang · Alicia Kavelaars · Ilya Kuzovkin 🔗 |
-
|
Learning Barrier Certificates: Towards Safe Reinforcement Learning with Zero Training-time Violations
(
Poster
)
>
|
Yuping Luo · Tengyu Ma 🔗 |
-
|
Automatic Risk Adaptation in Distributional Reinforcement Learning
(
Poster
)
>
|
Frederik Schubert · Theresa Eimer · Bodo Rosenhahn · Marius Lindauer 🔗 |
-
|
Coordinate-wise Control Variates for Deep Policy Gradients
(
Poster
)
>
|
Yuanyi Zhong · Yuan Zhou · Jian Peng 🔗 |
-
|
Disentangled Attention as Intrinsic Regularization for Bimanual Multi-Object Manipulation
(
Poster
)
>
|
Minghao Zhang · Pingcheng Jian · Yi Wu · Harry (Huazhe) Xu · Xiaolong Wang 🔗 |
-
|
Learning Vision-Guided Quadrupedal Locomotionwith Cross-Modal Transformers
(
Poster
)
>
|
Ruihan Yang · Minghao Zhang · Nicklas Hansen · Harry (Huazhe) Xu · Xiaolong Wang 🔗 |
-
|
Graph Neural Network Reinforcement Learning for Autonomous Mobility-on-Demand Systems
(
Poster
)
>
|
Daniele Gammelli · Kaidi Yang · James Harrison · Filipe Rodrigues · Francisco Pereira · Marco Pavone 🔗 |
-
|
Reward-Free Attacks in Multi-Agent Reinforcement Learning
(
Poster
)
>
|
Ted Fujimoto · Tim Doster · Adam Attarian · Jill Brandenberger · Nathan Hodas 🔗 |
-
|
Evaluating the progress of Deep Reinforcement Learning in the real world: aligning domain-agnostic and domain-specific research
(
Poster
)
>
|
Juan Jose Garau Luis · Edward Crawley · Bruce Cameron 🔗 |
-
|
Corruption Robust Offline Reinforcement Learning
(
Poster
)
>
|
Xuezhou Zhang · Yiding Chen · Jerry Zhu · Wen Sun 🔗 |
-
|
Deep Reinforcement Learning for 3D Furniture Layout in Indoor Graphic Scenes
(
Poster
)
>
|
xinhan di · Pengqian Yu 🔗 |
-
|
Learning to Represent State with Perceptual Schemata
(
Poster
)
>
|
Wilka Carvalho · Murray Shanahan 🔗 |
-
|
Continual Meta Policy Search for Sequential Multi-Task Learning
(
Poster
)
>
|
Glen Berseth · Zhiwei Zhang 🔗 |
-
|
Reinforcement Learning as One Big Sequence Modeling Problem
(
Poster
)
>
|
Michael Janner · Qiyang Li · Sergey Levine 🔗 |
-
|
Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap
(
Poster
)
>
|
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu 🔗 |
-
|
Learning Space Partitions for Path Planning
(
Poster
)
>
|
Kevin Yang · Tianjun Zhang · Chris Cummins · Brandon Cui · Benoit Steiner · Linnan Wang · Joseph E Gonzalez · Dan Klein · Yuandong Tian 🔗 |
-
|
ReLMM: Practical RL for Learning Mobile Manipulation Skills Using Only Onboard Sensors
(
Poster
)
>
|
Charles Sun · Jedrzej Orbik · Coline Devin · Abhishek Gupta · Glen Berseth · Sergey Levine 🔗 |
-
|
Representation Learning for Out-of-distribution Generalization in Downstream Tasks
(
Poster
)
>
|
Frederik Träuble · Andrea Dittadi · Manuel WĂĽthrich · Felix Widmaier · Peter Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer 🔗 |
-
|
Symbolic Relational Deep Reinforcement Learning based on Graph Neural Networks
(
Poster
)
>
|
JaromĂr Janisch · Tomas Pevny · Viliam Lisy 🔗 |
-
|
Hierarchical Multiple-Instance Data Classification with Costly Features
(
Poster
)
>
|
JaromĂr Janisch · Tomas Pevny · Viliam Lisy 🔗 |
-
|
Multi-agent Deep Covering Option Discovery
(
Poster
)
>
|
Jiayu Chen · Marina W Haliem · Tian Lan · Vaneet Aggarwal 🔗 |
-
|
Efficient Exploration by HyperDQN in Deep Reinforcement Learning
(
Poster
)
>
|
Ziniu Li · Yingru Li · Hao Liang · Tong Zhang 🔗 |
-
|
Revisiting Design Choices in Offline Model Based Reinforcement Learning
(
Poster
)
>
|
Cong Lu · Philip Ball · Jack Parker-Holder · Michael A Osborne · Stephen Roberts 🔗 |
-
|
De novo drug design using reinforcement learning with graph-based deep generative models
(
Poster
)
>
|
Sara Romeo Atance · Ola Engkvist · Simon Olsson · RocĂo Mercado 🔗 |
-
|
Optimization of high precision manufacturing by Monte Carlo Tree Search
(
Poster
)
>
|
Dorina Weichert · Alexander Kister 🔗 |
-
|
Designing Online Advertisements via Bandit and Reinforcement Learning
(
Poster
)
>
|
Richard Liu · Yusuke Narita · Kohei Yata 🔗 |
-
|
Semantic Tracklets: An Object-Centric Representation for Visual Multi-Agent Reinforcement Learning
(
Poster
)
>
|
Iou-Jen Liu · Zhongzheng Ren · Raymond Yeh · Alex Schwing 🔗 |
-
|
Model Selection for Offline Reinforcement Learning: Practical Considerations for Healthcare Settings
(
Poster
)
>
|
Shengpu Tang · Jenna Wiens 🔗 |
-
|
Offline Reinforcement Learning as Anti-Exploration
(
Poster
)
>
|
Shideh Rezaeifar · Robert Dadashi · Nino Vieillard · LĂ©onard Hussenot · Olivier Bachem · Olivier Pietquin · Matthieu Geist 🔗 |
-
|
What Can I Do Here? Learning New Skills by Imagining Visual Affordances
(
Poster
)
>
|
Khazatsky Alexander · Ashvin Nair 🔗 |
-
|
IV-RL: Leveraging Target Uncertainty Estimation for Sample Efficiency in Deep Reinforcement Learning
(
Poster
)
>
|
Vincent Mai · Kaustubh Mani · Liam Paull 🔗 |
-
|
Learning a Markov Model for evaluating Soccer Decision Making
(
Poster
)
>
|
Maaike Van Roy · Pieter Robberechts · Wen-Chi Yang · Luc De Raedt · Jesse Davis 🔗 |
-
|
Topological Experience Replay for Fast Q-Learning
(
Poster
)
>
|
Zhang-Wei Hong · Tao Chen · Yen-Chen Lin · Joni Pajarinen · Pulkit Agrawal 🔗 |
-
|
AppBuddy: Learning to Accomplish Tasks in Mobile Apps via Reinforcement Learning
(
Poster
)
>
|
Maayan Shvo · Zhiming Hu · Rodrigo A Toro Icarte · Iqbal Mohomed · Allan Jepson · Sheila McIlraith 🔗 |
-
|
Reward Shaping for User Satisfaction in a REINFORCE Recommender
(
Poster
)
>
|
12 presentersKonstantina Christakopoulou · Can Xu · Sai Zhang · Sriraj Badam · Daniel Li · Hao Wan · Xinyang Yi · Ya Le · Chris Berg · Eric Bencomo Dixon · Ed Chi · Minmin Chen |
-
|
Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks
(
Poster
)
>
|
Yijie Guo · Qiucheng Wu · Honglak Lee 🔗 |
-
|
Mind the Gap: Safely Bridging Offline and Online Reinforcement Learning
(
Poster
)
>
|
Wanqiao Xu · Kan Xu · Hamsa Bastani · Osbert Bastani 🔗 |
-
|
Deploying a Machine Learning System for COVID-19 Testing in Greece
(
Poster
)
>
|
Hamsa Bastani · Kimon Drakopoulos · Vishal Gupta 🔗 |
-
|
The Reflective Explorer: Online Meta-Exploration from Offline Data in Visual Tasks with Sparse Rewards
(
Poster
)
>
|
Rafael Rafailov · Varun Kumar · Tianhe (Kevin) Yu · Avi Singh · mariano phielipp · Chelsea Finn 🔗 |
-
|
Improving Human Decision-Making with Machine Learning
(
Poster
)
>
|
Hamsa Bastani · Osbert Bastani · Wichinpong Sinchaisri 🔗 |
-
|
Avoiding Overfitting to the Importance Weights in Offline Policy Optimization
(
Poster
)
>
|
Yao Liu · Emma Brunskill 🔗 |
-
|
Towards Reinforcement Learning for Pivot-based Neural Machine Translation with Non-autoregressive Transformer
(
Poster
)
>
|
Evgeniia Tokarchuk · Jan Rosendahl · Weiyue Wang · Pavel Petrushkov · Tomer Lancewicki · Shahram Khadivi · Hermann Ney 🔗 |
-
|
Data-Pooling Reinforcement Learning for Personalized Healthcare Intervention
(
Poster
)
>
|
Xinyun Chen · Pengyi Shi 🔗 |
-
|
Mitigating Covariate Shift in Imitation Learning via Offline Data Without Great Coverage
(
Poster
)
>
|
Jonathan Chang · Masatoshi Uehara · Dhruv Sreenivas · Rahul Kidambi · Wen Sun 🔗 |
-
|
MobILE: Model-Based Imitation Learning From Observation Alone
(
Poster
)
>
|
Rahul Kidambi · Jonathan Chang · Wen Sun 🔗 |
-
|
Objective Robustness in Deep Reinforcement Learning
(
Poster
)
>
|
Lauro Langosco di Langosco · Lee Sharkey 🔗 |
-
|
Is Bang-Bang Control All You Need?
(
Poster
)
>
|
Tim Seyde · Igor Gilitschenski · Wilko Schwarting · Bartolomeo Stellato · Martin Riedmiller · Markus Wulfmeier · Daniela Rus 🔗 |
-
|
Off-Policy Evaluation with General Logging Policies
(
Poster
)
>
|
Kyohei Okumura · Yusuke Narita · Kohei Yata · Akihiro Shimizu 🔗 |
-
|
Safe Deep Reinforcement Learning for Multi-Agent Systems with Continuous Action Spaces
(
Poster
)
>
|
Athina Nisioti · Dario Pavllo · Jonas Kohler 🔗 |
-
|
Reinforcement Learning with Logical Action-Aware Features for Polymer Discovery
(
Poster
)
>
|
Sarath Swaminathan · Dmitry Zubarev · Subhajit Chaudhury · Asim Munawar 🔗 |
-
|
Constraints Penalized Q-Learning for Safe Offline Reinforcement Learning
(
Poster
)
>
|
Haoran Xu · Xianyuan Zhan · Xiangyu Zhu 🔗 |
-
|
ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal Control
(
Poster
)
>
|
Xingshuai Huang · di wu · Benoit Boulet 🔗 |
-
|
Robust Risk-Sensitive Reinforcement Learning Agents for Trading Markets
(
Poster
)
>
|
Yue Gao · Pablo Hernandez-Leal · Kry Yik Chau Lui 🔗 |
-
|
Automating Power Networks: Improving RL Agent Robustness with Adversarial Training
(
Poster
)
>
|
Alexander Pan · Yongkyun Lee · Huan Zhang 🔗 |
-
|
Understanding the Generalization Gap in Visual Reinforcement Learning
(
Poster
)
>
|
Anurag Ajay · Ge Yang · Ofir Nachum · Pulkit Agrawal 🔗 |
-
|
Optimizing Dynamic Treatment Regimes via Volatile Contextual Gaussian Process Bandits
(
Poster
)
>
|
Ahmet Alparslan Celik · Cem Tekin 🔗 |
-
|
Reset-Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human Intervention
(
Poster
)
>
|
Abhishek Gupta · Justin Yu · Tony Z. Zhao · Vikash Kumar · Aaron Rovinsky · Kelvin Xu · Thomas Devlin · Sergey Levine 🔗 |
-
|
Attend2Pack: Bin Packing through Deep Reinforcement Learning with Attention
(
Poster
)
>
|
Jingwei Zhang · Bin Zi · Xiaoyu Ge 🔗 |
-
|
Designing Interpretable Approximations to Deep Reinforcement Learning
(
Poster
)
>
|
Nathan Dahlin · Rahul Jain · Pierluigi Nuzzo · Krishna Kalagarla · Nikhil Naik 🔗 |
-
|
Decision Transformer: Reinforcement Learning via Sequence Modeling
(
Poster
)
>
|
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Michael Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch 🔗 |
-
|
Multi-Task Offline Reinforcement Learning with Conservative Data Sharing
(
Poster
)
>
|
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn 🔗 |
-
|
Value-Based Deep Reinforcement Learning Requires Explicit Regularization
(
Poster
)
>
|
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine 🔗 |
-
|
A Policy Efficient Reduction Approach to Convex Constrained Deep Reinforcement Learning
(
Poster
)
>
|
Tianchi Cai · Wenpeng Zhang · Lihong Gu · Xiaodong Zeng · Jinjie Gu 🔗 |
-
|
Hierarchical Imitation Learning with Contextual Bandits for DynamicTreatment Regimes
(
Poster
)
>
|
Lu Wang · Wenchao Yu · Wei Cheng · Bo Zong · Haifeng Chen 🔗 |
-
|
Reinforcement Learning Agent Training with Goals for Real World Tasks
(
Poster
)
>
|
Xuan Zhao 🔗 |
-
|
RRL: Resnet as representation for Reinforcement Learning
(
Poster
)
>
|
Rutav Shah · Vikash Kumar 🔗 |
-
|
The MineRL Competitions at NeurIPS 2021
(
Poster
)
>
|
Cody Wild · Stephanie Milani 🔗 |
-
|
IGLU: Interactive Grounded Language Understanding in a Collaborative Environment
(
Poster
)
>
|
Julia Kiseleva · Julia Kiseleva 🔗 |