Skip to yearly menu bar Skip to main content


Bayesian Learning 1

Moderator: Dustin Tran


Chat is not available.

Thu 22 July 6:00 - 6:20 PDT

Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design

Adam Foster · Desi Ivanova · ILYAS MALIK · Tom Rainforth

We introduce Deep Adaptive Design (DAD), a method for amortizing the cost of adaptive Bayesian experimental design that allows experiments to be run in real-time. Traditional sequential Bayesian optimal experimental design approaches require substantial computation at each stage of the experiment. This makes them unsuitable for most real-world applications, where decisions must typically be made quickly. DAD addresses this restriction by learning an amortized design network upfront and then using this to rapidly run (multiple) adaptive experiments at deployment time. This network represents a design policy which takes as input the data from previous steps, and outputs the next design using a single forward pass; these design decisions can be made in milliseconds during the live experiment. To train the network, we introduce contrastive information bounds that are suitable objectives for the sequential setting, and propose a customized network architecture that exploits key symmetries. We demonstrate that DAD successfully amortizes the process of experimental design, outperforming alternative strategies on a number of problems.

Thu 22 July 6:20 - 6:25 PDT

Beyond the Pareto Efficient Frontier: Constraint Active Search for Multiobjective Experimental Design

Gustavo Malkomes · Bolong Cheng · Eric Lee · Michael McCourt

Many problems in engineering design and simulation require balancing competing objectives under the presence of uncertainty. Sample-efficient multiobjective optimization methods focus on the objective function values in metric space and ignore the sampling behavior of the design configurations in parameter space. Consequently, they may provide little actionable insight on how to choose designs in the presence of metric uncertainty or limited precision when implementing a chosen design. We propose a new formulation that accounts for the importance of the parameter space and is thus more suitable for multiobjective design problems; instead of searching for the Pareto-efficient frontier, we solicit the desired minimum performance thresholds on all objectives to define regions of satisfaction. We introduce an active search algorithm called Expected Coverage Improvement (ECI) to efficiently discover the region of satisfaction and simultaneously sample diverse acceptable configurations. We demonstrate our algorithm on several design and simulation domains: mechanical design, additive manufacturing, medical monitoring, and plasma physics.

Thu 22 July 6:25 - 6:30 PDT

Finite mixture models do not reliably learn the number of components

Diana Cai · Trevor Campbell · Tamara Broderick

Scientists and engineers are often interested in learning the number of subpopulations (or components) present in a data set. A common suggestion is to use a finite mixture model (FMM) with a prior on the number of components. Past work has shown the resulting FMM component-count posterior is consistent; that is, the posterior concentrates on the true, generating number of components. But consistency requires the assumption that the component likelihoods are perfectly specified, which is unrealistic in practice. In this paper, we add rigor to data-analysis folk wisdom by proving that under even the slightest model misspecification, the FMM component-count posterior diverges: the posterior probability of any particular finite number of components converges to 0 in the limit of infinite data. Contrary to intuition, posterior-density consistency is not sufficient to establish this result. We develop novel sufficient conditions that are more realistic and easily checkable than those common in the asymptotics literature. We illustrate practical consequences of our theory on simulated and real data.

Thu 22 July 6:30 - 6:35 PDT

Evaluating the Implicit Midpoint Integrator for Riemannian Hamiltonian Monte Carlo

James Brofos · Roy Lederman

Riemannian manifold Hamiltonian Monte Carlo is traditionally carried out using the generalized leapfrog integrator. However, this integrator is not the only choice and other integrators yielding valid Markov chain transition operators may be considered. In this work, we examine the implicit midpoint integrator as an alternative to the generalized leapfrog integrator. We discuss advantages and disadvantages of the implicit midpoint integrator for Hamiltonian Monte Carlo, its theoretical properties, and an empirical assessment of the critical attributes of such an integrator for Hamiltonian Monte Carlo: energy conservation, volume preservation, and reversibility. Empirically, we find that while leapfrog iterations are faster, the implicit midpoint integrator has better energy conservation, leading to higher acceptance rates, as well as better conservation of volume and better reversibility, arguably yielding a more accurate sampling procedure.

Thu 22 July 6:35 - 6:40 PDT

Streaming Bayesian Deep Tensor Factorization

Shikai Fang · Zheng Wang · Zhimeng Pan · Ji Liu · Shandian Zhe

Despite the success of existing tensor factorization methods, most of them conduct a multilinear decomposition, and rarely exploit powerful modeling frameworks, like deep neural networks, to capture a variety of complicated interactions in data. More important, for highly expressive, deep factorization, we lack an effective approach to handle streaming data, which are ubiquitous in real-world applications. To address these issues, we propose SBTD, a Streaming Bayesian Deep Tensor factorization method. We first use Bayesian neural networks (NNs) to build a deep tensor factorization model. We assign a spike-and-slab prior over each NN weight to encourage sparsity and to prevent overfitting. We then use multivariate Delta's method and moment matching to approximate the posterior of the NN output and calculate the running model evidence, based on which we develop an efficient streaming posterior inference algorithm in the assumed-density-filtering and expectation propagation framework. Our algorithm provides responsive incremental updates for the posterior of the latent factors and NN weights upon receiving newly observed tensor entries, and meanwhile identify and inhibit redundant/useless weights. We show the advantages of our approach in four real-world applications.

Thu 22 July 6:40 - 6:45 PDT

Active Learning of Continuous-time Bayesian Networks through Interventions

Dominik Linzner · Heinz Koeppl

We consider the problem of learning structures and parameters of Continuous-time Bayesian Networks (CTBNs) from time-course data under minimal experimental resources. In practice, the cost of generating experimental data poses a bottleneck, especially in the natural and social sciences. A popular approach to overcome this is Bayesian optimal experimental design (BOED). However, BOED becomes infeasible in high-dimensional settings, as it involves integration over all possible experimental outcomes. We propose a novel criterion for experimental design based on a variational approximation of the expected information gain. We show that for CTBNs, a semi-analytical expression for this criterion can be calculated for structure and parameter learning. By doing so, we can replace sampling over experimental outcomes by solving the CTBNs master-equation, for which scalable approximations exist. This alleviates the computational burden of sampling possible experimental outcomes in high-dimensions. We employ this framework to recommend interventional sequences. In this context, we extend the CTBN model to conditional CTBNs to incorporate interventions. We demonstrate the performance of our criterion on synthetic and real-world data.

Thu 22 July 6:45 - 6:50 PDT

Bayesian Attention Belief Networks

Shujian Zhang · Xinjie Fan · Bo Chen · Mingyuan Zhou

Attention-based neural networks have achieved state-of-the-art results on a wide range of tasks. Most such models use deterministic attention while stochastic attention is less explored due to the optimization difficulties or complicated model design. This paper introduces Bayesian attention belief networks, which construct a decoder network by modeling unnormalized attention weights with a hierarchy of gamma distributions, and an encoder network by stacking Weibull distributions with a deterministic-upward-stochastic-downward structure to approximate the posterior. The resulting auto-encoding networks can be optimized in a differentiable way with a variational lower bound. It is simple to convert any models with deterministic attention, including pretrained ones, to the proposed Bayesian attention belief networks. On a variety of language understanding tasks, we show that our method outperforms deterministic attention and state-of-the-art stochastic attention in accuracy, uncertainty estimation, generalization across domains, and robustness to adversarial attacks. We further demonstrate the general applicability of our method on neural machine translation and visual question answering, showing great potential of incorporating our method into various attention-related tasks.

Thu 22 July 6:50 - 6:55 PDT