Skip to yearly menu bar Skip to main content


Session

Deep Learning Theory 4

Moderator: Claire Monteleoni

Abstract:

Chat is not available.

Wed 21 July 17:00 - 17:20 PDT

Oral
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks

Bohan Wang · Qi Meng · Wei Chen · Tie-Yan Liu

Despite their overwhelming capacity to overfit, deep neural networks trained by specific optimization algorithms tend to generalize relatively well to unseen data. Recently, researchers explained it by investigating the implicit bias of optimization algorithms. A remarkable progress is the work (Lyu & Li, 2019), which proves gradient descent (GD) maximizes the margin of homogeneous deep neural networks. Except the first-order optimization algorithms like GD, adaptive algorithms such as AdaGrad, RMSProp and Adam are popular owing to their rapid training process. Mean-while, numerous works have provided empirical evidence that adaptive methods may suffer from poor generalization performance. However, theoretical explanation for the generalization of adaptive optimization algorithms is still lacking. In this paper, we study the implicit bias of adaptive optimization algorithms on homogeneous neural networks. In particular, we study the convergent direction of parameters when they are optimizing the logistic loss. We prove that the convergent direction of Adam and RMSProp is the same as GD, while for AdaGrad, the convergent direction depends on the adaptive conditioner. Technically, we provide a unified framework to analyze convergent direction of adaptive optimization algorithms by constructing novel and nontrivial adaptive gradient flow and surrogate margin. The theoretical findings explain the superiority on generalization of exponential moving average strategy that is adopted by RMSProp and Adam. To the best of knowledge, it is the first work to study the convergent direction of adaptive optimizations on non-linear deep neural networks

Wed 21 July 17:20 - 17:25 PDT

Spotlight
Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections

Alexander D Camuto · Xiaoyu Wang · Lingjiong Zhu · Christopher Holmes · Mert Gurbuzbalaban · Umut Simsekli

Gaussian noise injections (GNIs) are a family of simple and widely-used regularisation methods for training neural networks, where one injects additive or multiplicative Gaussian noise to the network activations at every iteration of the optimisation algorithm, which is typically chosen as stochastic gradient descent (SGD). In this paper, we focus on the so-called implicit effect' of GNIs, which is the effect of the injected noise on the dynamics of SGD. We show that this effect induces an \emph{asymmetric heavy-tailed noise} on SGD gradient updates. In order to model this modified dynamics, we first develop a Langevin-like stochastic differential equation that is driven by a general family of \emph{asymmetric} heavy-tailed noise. Using this model we then formally prove that GNIs induce animplicit bias', which varies depending on the heaviness of the tails and the level of asymmetry. Our empirical results confirm that different types of neural networks trained with GNIs are well-modelled by the proposed dynamics and that the implicit effect of these injections induces a bias that degrades the performance of networks.

Wed 21 July 17:25 - 17:30 PDT

Spotlight
Understanding Noise Injection in GANs

Ruili Feng · Deli Zhao · Zheng-Jun Zha

Noise injection is an effective way of circumventing overfitting and enhancing generalization in machine learning, the rationale of which has been validated in deep learning as well. Recently, noise injection exhibits surprising effectiveness when generating high-fidelity images in Generative Adversarial Networks (GANs) (e.g. StyleGAN). Despite its successful applications in GANs, the mechanism of its validity is still unclear. In this paper, we propose a geometric framework to theoretically analyze the role of noise injection in GANs. First, we point out the existence of the adversarial dimension trap inherent in GANs, which leads to the difficulty of learning a proper generator. Second, we successfully model the noise injection framework with exponential maps based on Riemannian geometry. Guided by our theories, we propose a general geometric realization for noise injection. Under our novel framework, the simple noise injection used in StyleGAN reduces to the Euclidean case. The goal of our work is to make theoretical steps towards understanding the underlying mechanism of state-of-the-art GAN algorithms. Experiments on image generation and GAN inversion validate our theory in practice.

Wed 21 July 17:30 - 17:35 PDT

Spotlight
FL-NTK: A Neural Tangent Kernel-based Framework for Federated Learning Analysis

Baihe Huang · Xiaoxiao Li · Zhao Song · Xin Yang

Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. The current paper presents a new class of convergence analysis for FL, Federated Neural Tangent Kernel (FL-NTK), which corresponds to overparamterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. The proposed theoretical analysis scheme can be generalized to more complex neural networks.

Wed 21 July 17:35 - 17:40 PDT

Spotlight
Improved OOD Generalization via Adversarial Training and Pretraing

Mingyang Yi · Lu Hou · Jiacheng Sun · Lifeng Shang · Xin Jiang · Qun Liu · Zhiming Ma

Recently, learning a model that generalizes well on out-of-distribution (OOD) data has attracted great attention in the machine learning community. In this paper, after defining OOD generalization by Wasserstein distance, we theoretically justify that a model robust to input perturbation also generalizes well on OOD data. Inspired by previous findings that adversarial training helps improve robustness, we show that models trained by adversarial training have converged excess risk on OOD data. Besides, in the paradigm of pre-training then fine-tuning, we theoretically justify that the input perturbation robust model in the pre-training stage provides an initialization that generalizes well on downstream OOD data. Finally, various experiments conducted on image classification and natural language understanding tasks verify our theoretical findings.

Wed 21 July 17:40 - 17:45 PDT

Spotlight
WGAN with an Infinitely Wide Generator Has No Spurious Stationary Points

Albert No · TaeHo Yoon · Sehyun Kwon · Ernest Ryu

Generative adversarial networks (GAN) are a widely used class of deep generative models, but their minimax training dynamics are not understood very well. In this work, we show that GANs with a 2-layer infinite-width generator and a 2-layer finite-width discriminator trained with stochastic gradient ascent-descent have no spurious stationary points. We then show that when the width of the generator is finite but wide, there are no spurious stationary points within a ball whose radius becomes arbitrarily large (to cover the entire parameter space) as the width goes to infinity.

Wed 21 July 17:45 - 17:50 PDT

Spotlight
Besov Function Approximation and Binary Classification on Low-Dimensional Manifolds Using Convolutional Residual Networks

Hao Liu · Minshuo Chen · Tuo Zhao · Wenjing Liao

Most of existing statistical theories on deep neural networks have sample complexities cursed by the data dimension and therefore cannot well explain the empirical success of deep learning on high-dimensional data. To bridge this gap, we propose to exploit the low-dimensional structures of the real world datasets and establish theoretical guarantees of convolutional residual networks (ConvResNet) in terms of function approximation and statistical recovery for binary classification problem. Specifically, given the data lying on a $d$-dimensional manifold isometrically embedded in $\mathbb{R}^D$, we prove that if the network architecture is properly chosen, ConvResNets can (1) approximate {\it Besov functions} on manifolds with arbitrary accuracy, and (2) learn a classifier by minimizing the empirical logistic risk, which gives an {\it excess risk} in the order of $n^{-\frac{s}{2s+2(s\vee d)}}$, where $s$ is a smoothness parameter. This implies that the sample complexity depends on the intrinsic dimension $d$, instead of the data dimension $D$. Our results demonstrate that ConvResNets are adaptive to low-dimensional structures of data sets.

Wed 21 July 17:50 - 17:55 PDT

Q&A
Q&A