The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks

Bohan Wang, Qi Meng, Wei Chen, Tie-Yan Liu

[ Abstract ] [ Livestream: Visit Deep Learning Theory 4 ] [ Paper ]

Despite their overwhelming capacity to overfit, deep neural networks trained by specific optimization algorithms tend to generalize relatively well to unseen data. Recently, researchers explained it by investigating the implicit bias of optimization algorithms. A remarkable progress is the work (Lyu & Li, 2019), which proves gradient descent (GD) maximizes the margin of homogeneous deep neural networks. Except the first-order optimization algorithms like GD, adaptive algorithms such as AdaGrad, RMSProp and Adam are popular owing to their rapid training process. Mean-while, numerous works have provided empirical evidence that adaptive methods may suffer from poor generalization performance. However, theoretical explanation for the generalization of adaptive optimization algorithms is still lacking. In this paper, we study the implicit bias of adaptive optimization algorithms on homogeneous neural networks. In particular, we study the convergent direction of parameters when they are optimizing the logistic loss. We prove that the convergent direction of Adam and RMSProp is the same as GD, while for AdaGrad, the convergent direction depends on the adaptive conditioner. Technically, we provide a unified framework to analyze convergent direction of adaptive optimization algorithms by constructing novel and nontrivial adaptive gradient flow and surrogate margin. The theoretical findings explain the superiority on generalization of exponential moving average strategy that is adopted by RMSProp and Adam. To the best of knowledge, it is the first work to study the convergent direction of adaptive optimizations on non-linear deep neural networks

Chat is not available.