Skip to yearly menu bar Skip to main content


Recovering AES Keys with a Deep Cold Boot Attack

Itamar Zimerman · Eliya Nachmani · Lior Wolf


Keywords: [ Others ]


Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down. While most of the bits have been corrupted, many bits, at random locations, have not. Since the keys in many encryption schemes are being expanded in memory into longer keys with fixed redundancies, the keys can often be restored. In this work we combine a deep error correcting code technique together with a modified SAT solver scheme in order to apply the attack to AES keys. Even though AES consists Rijndael SBOX elements, that are specifically designed to be resistant to linear and differential cryptanalysis, our method provides a novel formalization of the AES key scheduling as a computational graph, which is implemented by neural message passing network. Our results show that our methods outperform the state of the art attack methods by a very large gap.

Chat is not available.