Skip to yearly menu bar Skip to main content


Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach

Federico Lopez · Beatrice Pozzetti · Steve Trettel · Michael Strube · Anna Wienhard


Keywords: [ Embedding and Representation learning ]


Learning faithful graph representations as sets of vertex embeddings has become a fundamental intermediary step in a wide range of machine learning applications. We propose the systematic use of symmetric spaces in representation learning, a class encompassing many of the previously used embedding targets. This enables us to introduce a new method, the use of Finsler metrics integrated in a Riemannian optimization scheme, that better adapts to dissimilar structures in the graph. We develop a tool to analyze the embeddings and infer structural properties of the data sets. For implementation, we choose Siegel spaces, a versatile family of symmetric spaces. Our approach outperforms competitive baselines for graph reconstruction tasks on various synthetic and real-world datasets. We further demonstrate its applicability on two downstream tasks, recommender systems and node classification.

Chat is not available.