Skip to yearly menu bar Skip to main content


Poster

Online Learning with Optimism and Delay

Genevieve Flaspohler · Francesco Orabona · Judah Cohen · Soukayna Mouatadid · Miruna Oprescu · Paulo Orenstein · Lester Mackey

Keywords: [ Online Learning Theory ]


Abstract:

Inspired by the demands of real-time climate and weather forecasting, we develop optimistic online learning algorithms that require no parameter tuning and have optimal regret guarantees under delayed feedback. Our algorithms---DORM, DORM+, and AdaHedgeD---arise from a novel reduction of delayed online learning to optimistic online learning that reveals how optimistic hints can mitigate the regret penalty caused by delay. We pair this delay-as-optimism perspective with a new analysis of optimistic learning that exposes its robustness to hinting errors and a new meta-algorithm for learning effective hinting strategies in the presence of delay. We conclude by benchmarking our algorithms on four subseasonal climate forecasting tasks, demonstrating low regret relative to state-of-the-art forecasting models.

Chat is not available.