Poster

KNAS: Green Neural Architecture Search

Jingjing Xu · Liang Zhao · Junyang Lin · Rundong Gao · Xu SUN · Hongxia Yang

Keywords: [ Architectures ]

[ Abstract ]
[ Paper ]
[ Visit Poster at Spot A6 in Virtual World ]
Tue 20 Jul 9 a.m. PDT — 11 a.m. PDT
 
Spotlight presentation: AutoML and Deep Architecture
Tue 20 Jul 6 a.m. PDT — 7 a.m. PDT

Abstract:

Many existing neural architecture search (NAS) solutions rely on downstream training for architecture evaluation, which takes enormous computations. Considering that these computations bring a large carbon footprint, this paper aims to explore a green (namely environmental-friendly) NAS solution that evaluates architectures without training. Intuitively, gradients, induced by the architecture itself, directly decide the convergence and generalization results. It motivates us to propose the gradient kernel hypothesis: Gradients can be used as a coarse-grained proxy of downstream training to evaluate random-initialized networks. To support the hypothesis, we conduct a theoretical analysis and find a practical gradient kernel that has good correlations with training loss and validation performance. According to this hypothesis, we propose a new kernel based architecture search approach KNAS. Experiments show that KNAS achieves competitive results with orders of magnitude faster than ``train-then-test'' paradigms on image classification tasks. Furthermore, the extremely low search cost enables its wide applications. The searched network also outperforms strong baseline RoBERTA-large on two text classification tasks.

Chat is not available.