Skip to yearly menu bar Skip to main content


Locally Adaptive Label Smoothing Improves Predictive Churn

Dara Bahri · Heinrich Jiang

Keywords: [ Deep Learning ]


Training modern neural networks is an inherently noisy process that can lead to high \emph{prediction churn}-- disagreements between re-trainings of the same model due to factors such as randomization in the parameter initialization and mini-batches-- even when the trained models all attain similar accuracies. Such prediction churn can be very undesirable in practice. In this paper, we present several baselines for reducing churn and show that training on soft labels obtained by adaptively smoothing each example's label based on the example's neighboring labels often outperforms the baselines on churn while improving accuracy on a variety of benchmark classification tasks and model architectures.

Chat is not available.