Skip to yearly menu bar Skip to main content


Poster

Bias-Robust Bayesian Optimization via Dueling Bandits

Johannes Kirschner · Andreas Krause

Keywords: [ Reinforcement Learning and Planning ] [ Bandits ]


Abstract:

We consider Bayesian optimization in settings where observations can be adversarially biased, for example by an uncontrolled hidden confounder. Our first contribution is a reduction of the confounded setting to the dueling bandit model. Then we propose a novel approach for dueling bandits based on information-directed sampling (IDS). Thereby, we obtain the first efficient kernelized algorithm for dueling bandits that comes with cumulative regret guarantees. Our analysis further generalizes a previously proposed semi-parametric linear bandit model to non-linear reward functions, and uncovers interesting links to doubly-robust estimation.

Chat is not available.