Skip to yearly menu bar Skip to main content


Model-Based Reinforcement Learning via Latent-Space Collocation

Oleh Rybkin · Chuning Zhu · Anusha Nagabandi · Kostas Daniilidis · Igor Mordatch · Sergey Levine

Keywords: [ Reinforcement Learning and Planning ] [ Deep RL ]


The ability to plan into the future while utilizing only raw high-dimensional observations, such as images, can provide autonomous agents with broad and general capabilities. However, realistic tasks require performing temporally extended reasoning, and cannot be solved with only myopic, short-sighted planning. Recent work in model-based reinforcement learning (RL) has shown impressive results on tasks that require only short-horizon reasoning. In this work, we study how the long-horizon planning abilities can be improved with an algorithm that optimizes over sequences of states, rather than actions, which allows better credit assignment. To achieve this, we draw on the idea of collocation and adapt it to the image-based setting by leveraging probabilistic latent variable models, resulting in an algorithm that optimizes trajectories over latent variables. Our latent collocation method (LatCo) provides a general and effective visual planning approach, and significantly outperforms prior model-based approaches on challenging visual control tasks with sparse rewards and long-term goals. See the videos on the supplementary website \url{}

Chat is not available.