Poster
in
Workshop: Theory and Practice of Differential Privacy
Differentially Private Histograms under Continual Observation: Streaming Selection into the Unknown
Adrian Rivera Cardoso · Ryan Rogers
Abstract:
We generalize the continuous observation privacy setting from Dwork et al. '10 and Chan et al. '11 by allowing each event in a stream to be a subset of some (possibly unknown) universe of items. We design differentially private (DP) algorithms for histograms in several settings, including top-$k$ selection, with privacy loss that scales with polylog$(T)$, where $T$ is the maximum length of the input stream. We present a meta-algorithm that can use existing one-shot top-$k$ private algorithms as a subroutine to continuously release DP histograms from a stream. Further, we present more practical DP algorithms for two settings: 1) continuously releasing the top-$k$ counts from a histogram over a known domain when an event can consist of an arbitrary number of items, and 2) continuously releasing histograms over an unknown domain when an event has a limited number of items.
Chat is not available.