Poster
in
Workshop: Theory and Practice of Differential Privacy
Hypothesis Testing for Differentially Private Linear Regression
Daniel Alabi · Salil Vadhan
Abstract:
In this work, we design differentially private hypothesis tests for the following problems in the general linear model: testing a linear relationship and testing for the presence of mixtures. The majority of our hypothesis tests are based on differentially private versions of the $F$-statistic for the general linear model framework, which are uniformly most powerful unbiased in the non-private setting. We also present another test for testing mixtures, based on the differentially private nonparametric tests of Couch, Kazan, Shi, Bray, and Groce (CCS 2019), which is especially suited for the small dataset regime. Through a suite of Monte Carlo based experiments, we show that our tests achieve desired \textit{significance levels} and have a high \textit{power} that approaches the power of the non-private tests as we increase sample sizes or the privacy-loss parameter.
Chat is not available.