Workshop: Subset Selection in Machine Learning: From Theory to Applications

Effective Evaluation of Deep Active Learning on Image Classification Tasks

Nathan Beck · Durga S · Ganesh Ramakrishnan · Rishabh Iyer


With the goal of making deep learning more label-efficient, a growing number of papers have been studying active learning (AL) for deep models. However, there are a number of issues in the prevalent experimental settings, mainly stemming from a lack of unified implementation and benchmarking. Issues in the current literature include sometimes contradictory observations on the performance of different AL algorithms, unintended exclusion of important generalization approaches such as data augmentation and SGD for optimization, a lack of study of evaluation facets like the labeling efficiency of AL, and little or no clarity on the scenarios in which AL outperforms random sampling (RS). In this work, we present a unified re-implementation of state-of-the-art AL algorithms in the context of image classification, and we carefully study these issues as facets of effective evaluation. On the positive side, we show that AL techniques are 2x to 4x more label-efficient compared to RS with the use of data augmentation. Surprisingly, when data augmentation is included, there is no longer a consistent gain in using BADGE, a state-of-the-art approach, over simple uncertainty sampling. We then do a careful analysis of how existing approaches perform with varying number of examples per class. Finally, we provide other insights for AL practitioners to consider in future work, such as the use of data subset selection techniques for intermediate model training.