Skip to yearly menu bar Skip to main content


Search All 2020 Events
 

141 Results

<<   <   Page 11 of 12   >   >>
Poster
Tue 9:00 Nearly Linear Row Sampling Algorithm for Quantile Regression
Yi Li · Ruosong Wang · Lin Yang · Hanrui Zhang
Poster
Wed 8:00 Optimal transport mapping via input convex neural networks
Ashok Vardhan Makkuva · Amirhossein Taghvaei · Sewoong Oh · Jason Lee
Poster
Thu 6:00 Interpreting Robust Optimization via Adversarial Influence Functions
Zhun Deng · Cynthia Dwork · Jialiang Wang · Linjun Zhang
Poster
Tue 7:00 Differentiating through the Fréchet Mean
Aaron Lou · Isay Katsman · Qingxuan Jiang · Serge Belongie · Ser Nam Lim · Christopher De Sa
Poster
Wed 8:00 Online mirror descent and dual averaging: keeping pace in the dynamic case
Huang Fang · Nick Harvey · Victor Sanches Portella · Michael Friedlander
Poster
Thu 8:00 Coresets for Data-efficient Training of Machine Learning Models
Baharan Mirzasoleiman · Jeff Bilmes · Jure Leskovec
Poster
Wed 12:00 Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li · Dmitry Kovalev · Xun Qian · Peter Richtarik
Poster
Tue 7:00 Self-Concordant Analysis of Frank-Wolfe Algorithms
Pavel Dvurechenskii · Petr Ostroukhov · Kamil Safin · Shimrit Shtern · Mathias Staudigl
Poster
Wed 13:00 Super-efficiency of automatic differentiation for functions defined as a minimum
Pierre Ablin · Gabriel Peyré · Thomas Moreau
Poster
Tue 18:00 Hybrid Stochastic-Deterministic Minibatch Proximal Gradient: Less-Than-Single-Pass Optimization with Nearly Optimal Generalization
Pan Zhou · Xiao-Tong Yuan
Poster
Tue 8:00 Is Local SGD Better than Minibatch SGD?
Blake Woodworth · Kumar Kshitij Patel · Sebastian Stich · Zhen Dai · Brian Bullins · Brendan McMahan · Ohad Shamir · Nati Srebro
Poster
Tue 13:00 Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses
Pierre Laforgue · Alex Lambert · Luc Brogat-Motte · Florence d'Alche-Buc