Skip to yearly menu bar Skip to main content


Search All 2020 Events
 

132 Results

<<   <   Page 10 of 11   >   >>
Poster
Wed 13:00 Estimating the Error of Randomized Newton Methods: A Bootstrap Approach
Miles Lopes · Jessie X.T. Chen
Poster
Wed 8:00 Optimal transport mapping via input convex neural networks
Ashok Vardhan Makkuva · Amirhossein Taghvaei · Sewoong Oh · Jason Lee
Poster
Thu 12:00 Conditional gradient methods for stochastically constrained convex minimization
Maria-Luiza Vladarean · Ahmet Alacaoglu · Ya-Ping Hsieh · Volkan Cevher
Poster
Thu 7:00 On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data
Di Wang · Hanshen Xiao · Srinivas Devadas · Jinhui Xu
Poster
Tue 9:00 Nearly Linear Row Sampling Algorithm for Quantile Regression
Yi Li · Ruosong Wang · Lin Yang · Hanrui Zhang
Poster
Thu 6:00 Interpreting Robust Optimization via Adversarial Influence Functions
Zhun Deng · Cynthia Dwork · Jialiang Wang · Linjun Zhang
Poster
Tue 7:00 Differentiating through the Fréchet Mean
Aaron Lou · Isay Katsman · Qingxuan Jiang · Serge Belongie · Ser Nam Lim · Christopher De Sa
Poster
Thu 8:00 Coresets for Data-efficient Training of Machine Learning Models
Baharan Mirzasoleiman · Jeff Bilmes · Jure Leskovec
Poster
Wed 8:00 Online mirror descent and dual averaging: keeping pace in the dynamic case
Huang Fang · Nick Harvey · Victor Sanches Portella · Michael Friedlander
Poster
Tue 18:00 Hybrid Stochastic-Deterministic Minibatch Proximal Gradient: Less-Than-Single-Pass Optimization with Nearly Optimal Generalization
Pan Zhou · Xiao-Tong Yuan
Poster
Wed 12:00 Acceleration for Compressed Gradient Descent in Distributed and Federated Optimization
Zhize Li · Dmitry Kovalev · Xun Qian · Peter Richtarik
Poster
Tue 7:00 Self-Concordant Analysis of Frank-Wolfe Algorithms
Pavel Dvurechenskii · Petr Ostroukhov · Kamil Safin · Shimrit Shtern · Mathias Staudigl