Keywords: [ Optimization ] [ Architectures ] [ Deep Learning - General ]
We propose a novel variant of SGD customized for training network architectures that support anytime behavior: such networks produce a series of increasingly accurate outputs over time. Efficient architectural designs for these networks focus on re-using internal state; subnetworks must produce representations relevant for both imme- diate prediction as well as refinement by subse- quent network stages. We consider traditional branched networks as well as a new class of re- cursively nested networks. Our new optimizer, Orthogonalized SGD, dynamically re-balances task-specific gradients when training a multitask network. In the context of anytime architectures, this optimizer projects gradients from later out- puts onto a parameter subspace that does not in- terfere with those from earlier outputs. Experi- ments demonstrate that training with Orthogonal- ized SGD significantly improves generalization accuracy of anytime networks.