Optimistic Bounds for Multi-output Learning

Henry Reeve · Ata Kaban

Keywords: [ Statistical Learning Theory ] [ Supervised Learning ] [ Boosting / Ensemble Methods ]

[ Abstract ] [ Join Zoom
Please do not share or post zoom links


We investigate the challenge of multi-output learning, where the goal is to learn a vector-valued function based on a supervised data set. This includes a range of important problems in Machine Learning including multi-target regression, multi-class classification and multi-label classification. We begin our analysis by introducing the self-bounding Lipschitz condition for multi-output loss functions, which interpolates continuously between a classical Lipschitz condition and a multi-dimensional analogue of a smoothness condition. We then show that the self-bounding Lipschitz condition gives rise to optimistic bounds for multi-output learning, which attain the minimax optimal rate up to logarithmic factors. The proof exploits local Rademacher complexity combined with a powerful minoration inequality due to Srebro, Sridharan and Tewari. As an application we derive a state-of-the-art generalisation bound for multi-class gradient boosting.

Chat is not available.