Poster
Correlation Clustering with Asymmetric Classification Errors
Jafar Jafarov · Sanchit Kalhan · Konstantin Makarychev · Yury Makarychev
Keywords: [ Clustering ] [ Combinatorial Optimization ] [ Unsupervised and Semi-supervised Learning ]
Abstract:
In the Correlation Clustering problem, we are given a weighted graph with its edges labelled as "similar" or "dissimilar" by a binary classifier. The goal is to produce a clustering that minimizes the weight of "disagreements": the sum of the weights of "similar" edges across clusters and "dissimilar" edges within clusters. We study the correlation clustering problem under the following assumption: Every "similar" edge has weight and every "dissimilar" edge has weight (where and is a scaling parameter). We give a approximation algorithm for this problem. This assumption captures well the scenario when classification errors are asymmetric. Additionally, we show an asymptotically matching Linear Programming integrality gap of .
Chat is not available.