Skip to yearly menu bar Skip to main content


Efficient Proximal Mapping of the 1-path-norm of Shallow Networks

Fabian Latorre · Paul Rolland · Shaul Nadav Hallak · Volkan Cevher

Keywords: [ Adversarial Examples ] [ Non-convex Optimization ] [ Optimization ] [ Algorithms ] [ Deep Learning - Algorithms ]


We demonstrate two new important properties of the 1-path-norm of shallow neural networks. First, despite its non-smoothness and non-convexity it allows a closed form proximal operator which can be efficiently computed, allowing the use of stochastic proximal-gradient-type methods for regularized empirical risk minimization. Second, when the activation functions is differentiable, it provides an upper bound on the Lipschitz constant of the network. Such bound is tighter than the trivial layer-wise product of Lipschitz constants, motivating its use for training networks robust to adversarial perturbations. In practical experiments we illustrate the advantages of using the proximal mapping and we compare the robustness-accuracy trade-off induced by the 1-path-norm, L1-norm and layer-wise constraints on the Lipschitz constant (Parseval networks).

Chat is not available.