Skip to yearly menu bar Skip to main content


On Second-Order Group Influence Functions for Black-Box Predictions

Samyadeep Basu · Xuchen You · Soheil Feizi

Keywords: [ Robust Statistics and Machine Learning ] [ Accountability, Transparency and Interpretability ]


With the rapid adoption of machine learning systems in sensitive applications, there is an increasing need to make black-box models explainable. Often we want to identify an influential group of training samples in a particular test prediction for a given machine learning model. Existing influence functions tackle this problem by using first-order approximations of the effect of removing a sample from the training set on model parameters. To compute the influence of a group of training samples (rather than an individual point) in model predictions, the change in optimal model parameters after removing that group from the training set can be large. Thus, in such cases, the first-order approximation can be loose. In this paper, we address this issue and propose second-order influence functions for identifying influential groups in test-time predictions. For linear models, across different sizes and types of groups, we show that using the proposed second-order influence function improves the correlation between the computed influence values and the ground truth ones. We also show that second-order influence functions could be used with optimization techniques to improve the selection of the most influential group for a test-sample.

Chat is not available.