UniLMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan Yang, Xiaodong Liu, Yu Wang, Jianfeng Gao, Songhao Piao, Ming Zhou, Hsiao-Wuen Hon,

Abstract Paper

Thu Jul 16 8 a.m. PDT [iCal] [ Join Zoom ]
Thu Jul 16 7 p.m. PDT [iCal] [ Join Zoom ]
Please do not share or post zoom links


We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of language understanding and generation tasks across several widely used benchmarks. The code and pre-trained models are available at https://github.com/microsoft/unilm.

Chat is not available.