Skip to yearly menu bar Skip to main content


Distinguishing Cause from Effect Using Quantiles: Bivariate Quantile Causal Discovery

Natasa Tagasovska · ValĂ©rie Chavez-Demoulin · Thibault Vatter

Keywords: [ Information Theory and Estimation ] [ Non-parametric Methods ] [ Robust Statistics and Machine Learning ] [ Causality ]


Causal inference using observational data is challenging, especially in the bivariate case. Through the minimum description length principle, we link the postulate of independence between the generating mechanisms of the cause and of the effect given the cause to quantile regression. Based on this theory, we develop Bivariate Quantile Causal Discovery (bQCD), a new method to distinguish cause from effect assuming no confounding, selection bias or feedback. Because it uses multiple quantile levels instead of the conditional mean only, bQCD is adaptive not only to additive, but also to multiplicative or even location-scale generating mechanisms. To illustrate the effectiveness of our approach, we perform an extensive empirical comparison on both synthetic and real datasets. This study shows that bQCD is robust across different implementations of the method (i.e., the quantile regression), computationally efficient, and compares favorably to state-of-the-art methods.

Chat is not available.