Universal Equivariant Multilayer Perceptrons

Siamak Ravanbakhsh,


Please do not share or post zoom links


Group invariant and equivariant Multilayer Perceptrons (MLP), also known as Equivariant Networks, have achieved remarkable success in learning on a variety of data structures, such as sequences, images, sets, and graphs. Using tools from group theory, this paper proves the universality of a broad class of equivariant MLPs with a single hidden layer. In particular, it is shown that having a hidden layer on which the group acts regularly is sufficient for universal equivariance (invariance). A corollary is unconditional universality of equivariant MLPs for Abelian groups, such as CNNs with a single hidden layer. A second corollary is the universality of equivariant MLPs with a high-order hidden layer, where we give both group-agnostic bounds and means for calculating group-specific bounds on the order of hidden layer that guarantees universal equivariance (invariance).

Chat is not available.