A general recurrent state space framework for modeling neural dynamics during decision-making

David Zoltowski, Jonathan Pillow, Scott Linderman,

Abstract Paper

Please do not share or post zoom links


An open question in systems and computational neuroscience is how neural circuits accumulate evidence towards a decision. Fitting models of decision-making theory to neural activity helps answer this question, but current approaches limit the number of these models that we can fit to neural data. Here we propose a general framework for modeling neural activity during decision-making. The framework includes the canonical drift-diffusion model and enables extensions such as multi-dimensional accumulators, variable and collapsing boundaries, and discrete jumps. Our framework is based on constraining the parameters of recurrent state space models, for which we introduce a scalable variational Laplace EM inference algorithm. We applied the modeling approach to spiking responses recorded from monkey parietal cortex during two decision-making tasks. We found that a two-dimensional accumulator better captured the responses of a set of parietal neurons than a single accumulator model, and we identified a variable lower boundary in the responses of a parietal neuron during a random dot motion task. We expect this framework will be useful for modeling neural dynamics in a variety of decision-making settings.

Chat is not available.