Skip to yearly menu bar Skip to main content


A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton

Risheng Liu · Pan Mu · Xiaoming Yuan · Shangzhi Zeng · Jin Zhang

Keywords: [ Non-convex Optimization ] [ Optimization - Non-convex ]


In recent years, a variety of gradient-based bi-level optimization methods have been developed for learning tasks. However, theoretical guarantees of these existing approaches often heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, by formulating bi-level models from the optimistic viewpoint and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for bi-level programming. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Furthermore, we improve the convergence properties of conventional first-order bi-level schemes (under the LLS simplification) based on our proof recipe. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning.

Chat is not available.