Skip to yearly menu bar Skip to main content

Poster Teaser
Workshop: Graph Representation Learning and Beyond (GRL+)

(#12 / Sess. 1) Deep Graph Contrastive Representation Learning

Yanqiao Zhu


Graph representation learning nowadays becomes fundamental in analyzing graph-structured data. Inspired by recent success of contrastive methods, in this paper, we propose a novel framework for unsupervised graph representation learning by leveraging a contrastive objective at the node level. Specifically, we generate two graph views by corruption and learn node representations by maximizing the agreement of node representations in these two views. To provide diverse node contexts for the contrastive objective, we propose a hybrid scheme for generating graph views on both structure and attribute levels. We perform empirical experiments on both transductive and inductive learning tasks using a variety of real-world datasets. Experimental experiments demonstrate that despite its simplicity, our proposed method consistently outperforms existing state-of-the-art methods by large margins. Notably, our method gains about 10% absolute improvements on protein function prediction. Our unsupervised method even surpasses its supervised counterparts on transductive tasks.

Teaser video |

Chat is not available.