Workshop
ICML 2021 Workshop on Unsupervised Reinforcement Learning
Feryal Behbahani 路 Joelle Pineau 路 Lerrel Pinto 路 Roberta Raileanu 路 Aravind Srinivas 路 Denis Yarats 路 Amy Zhang
Fri 23 Jul, 5:45 a.m. PDT
Unsupervised learning has begun to deliver on its promise in the recent past with tremendous progress made in the fields of natural language processing and computer vision whereby large scale unsupervised pre-training has enabled fine-tuning to downstream supervised learning tasks with limited labeled data. This is particularly encouraging and appealing in the context of reinforcement learning considering that it is expensive to perform rollouts in the real world with annotations either in the form of reward signals or human demonstrations. We therefore believe that a workshop in the intersection of unsupervised and reinforcement learning is timely and we hope to bring together researchers with diverse views on how to make further progress in this exciting and open-ended subfield.
Schedule
Fri 5:45 a.m. - 6:00 a.m.
|
Opening remarks
(
Opening remarks
)
>
|
馃敆 |
Fri 6:00 a.m. - 6:30 a.m.
|
Invited Talk by David Ha
(
Invited talk
)
>
|
David Ha 馃敆 |
Fri 6:30 a.m. - 7:00 a.m.
|
Invited Talk by Alessandro Lazaric
(
Invited talk
)
>
SlidesLive Video |
Alessandro Lazaric 馃敆 |
Fri 7:00 a.m. - 7:30 a.m.
|
Invited Talk by Kelsey Allen
(
Invited talk
)
>
SlidesLive Video |
Kelsey Allen 馃敆 |
Fri 7:30 a.m. - 8:30 a.m.
|
Coffee break and Poster Session
(
Poster Session
)
>
|
馃敆 |
Fri 8:30 a.m. - 9:00 a.m.
|
Invited Talk by Danijar Hafner
(
Invited talk
)
>
SlidesLive Video |
Danijar Hafner 馃敆 |
Fri 9:00 a.m. - 9:30 a.m.
|
Invited Talk by Nan Rosemary Ke
(
Invited talk
)
>
SlidesLive Video |
Rosemary Nan Ke 馃敆 |
Fri 9:30 a.m. - 10:30 a.m.
|
Lunch and Poster Session
(
Poster session
)
>
|
馃敆 |
Fri 10:30 a.m. - 10:50 a.m.
|
Oral Presentation: Discovering and Achieving Goals with World Models
(
Oral presentation
)
>
SlidesLive Video |
Oleh Rybkin 路 Deepak Pathak 馃敆 |
Fri 10:50 a.m. - 11:10 a.m.
|
Oral Presentation: Planning from Pixels in Environments with Combinatorially Hard Search Spaces
(
Oral Presentation
)
>
SlidesLive Video |
Georg Martius 路 Marco Bagatella 馃敆 |
Fri 11:10 a.m. - 11:30 a.m.
|
Oral Presentation: Learning Task Agnostic Skills with Data-driven Guidance
(
Oral Presentation
)
>
SlidesLive Video |
Even Klemsdal 路 Abdulmajid Murad 馃敆 |
Fri 11:30 a.m. - 12:00 p.m.
|
Invited Talk by Kiant茅 Brantley
(
Invited talk
)
>
SlidesLive Video |
Kiante Brantley 馃敆 |
Fri 12:00 p.m. - 1:00 p.m.
|
Coffee break and Poster Session
(
Poster session
)
>
|
馃敆 |
Fri 1:00 p.m. - 1:30 p.m.
|
Invited Talk by Chelsea Finn
(
Invited talk
)
>
SlidesLive Video |
Chelsea Finn 馃敆 |
Fri 1:30 p.m. - 2:00 p.m.
|
Invited Talk by Pieter Abbeel
(
Invited talk
)
>
SlidesLive Video |
Pieter Abbeel 馃敆 |
Fri 2:00 p.m. - 2:30 p.m.
|
Panel Discussion
(
Panel Discussion
)
>
SlidesLive Video |
Rosemary Nan Ke 路 Danijar Hafner 路 Pieter Abbeel 路 Chelsea Finn 路 Chelsea Finn 馃敆 |
-
|
Reward-Free Policy Space Compression for Reinforcement Learning
(
Poster
)
>
|
Mirco Mutti 路 Stefano Del Col 路 Marcello Restelli 馃敆 |
-
|
Learning to Explore Multiple Environments without Rewards
(
Poster
)
>
|
Mirco Mutti 路 Mattia Mancassola 路 Marcello Restelli 馃敆 |
-
|
The Importance of Non-Markovianity in Maximum State Entropy Exploration
(
Poster
)
>
|
Mirco Mutti 路 Riccardo De Santi 路 Marcello Restelli 馃敆 |
-
|
Direct then Diffuse: Incremental Unsupervised Skill Discovery for State Covering and Goal Reaching
(
Poster
)
>
|
Pierre-Alexandre Kamienny 路 Jean Tarbouriech 路 Alessandro Lazaric 路 Ludovic Denoyer 馃敆 |
-
|
Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation
(
Poster
)
>
|
Evgenii Nikishin 路 Romina Abachi 路 Rishabh Agarwal 路 Pierre-Luc Bacon 馃敆 |
-
|
Planning from Pixels in Environments with Combinatorially Hard Search Spaces
(
Poster
)
>
|
Marco Bagatella 路 Miroslav Ol拧谩k 路 Michal Rolinek 路 Georg Martius 馃敆 |
-
|
Beyond Fine-Tuning: Transferring Behavior in Reinforcement Learning
(
Poster
)
>
|
V铆ctor Campos 路 Pablo Sprechmann 路 Steven Hansen 路 Andre Barreto 路 Steven Kapturowski 路 Alex Vitvitskyi 路 Adri脿 Puigdomenech Badia 路 Charles Blundell 馃敆 |
-
|
Pretrained Encoders are All You Need
(
Poster
)
>
|
Mina Khan 路 Advait Rane 路 Srivatsa P 路 Shriram Chenniappa 路 Rishabh Anand 路 Sherjil Ozair 路 Patricia Maes 馃敆 |
-
|
Density-Based Bonuses on Learned Representations for Reward-Free Exploration in Deep Reinforcement Learning
(
Poster
)
>
|
Omar Darwiche Domingues 路 Corentin Tallec 路 Remi Munos 路 Michal Valko 馃敆 |
-
|
Learning Task Agnostic Skills with Data-driven Guidance
(
Poster
)
>
|
Even Klemsdal 路 Sverre Herland 路 Abdulmajid Murad 馃敆 |
-
|
Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation
(
Poster
)
>
|
Nicklas Hansen 路 Hao Su 路 Xiaolong Wang 馃敆 |
-
|
Disentangled Predictive Representation for Meta-Reinforcement Learning
(
Poster
)
>
|
Sephora Madjiheurem 路 Laura Toni 馃敆 |
-
|
Decoupling Exploration and Exploitation in Reinforcement Learning
(
Poster
)
>
|
Lukas Sch盲fer 路 Filippos Christianos 路 Josiah Hanna 路 Stefano V. Albrecht 馃敆 |
-
|
Tangent Space Least Adaptive Clustering
(
Poster
)
>
|
James Buenfil 路 Samson Koelle 路 Marina Meila 馃敆 |
-
|
Representation Learning for Out-of-distribution Generalization in Downstream Tasks
(
Poster
)
>
|
Frederik Tr盲uble 路 Andrea Dittadi 路 Manuel Wuthrich 路 Felix Widmaier 路 Peter V Gehler 路 Ole Winther 路 Francesco Locatello 路 Olivier Bachem 路 Bernhard Sch枚lkopf 路 Stefan Bauer 馃敆 |
-
|
SparseDice: Imitation Learning for Temporally Sparse Data via Regularization
(
Poster
)
>
|
Alberto Camacho 路 Izzeddin Gur 路 Marcin Moczulski 路 Ofir Nachum 路 Aleksandra Faust 馃敆 |
-
|
CoBERL: Contrastive BERT for Reinforcement Learning
(
Poster
)
>
|
Andrea Banino 路 Adri脿 Puigdomenech Badia 路 Jacob C Walker 路 Tim Scholtes 路 Jovana Mitrovic 路 Charles Blundell 馃敆 |
-
|
Visual Adversarial Imitation Learning using Variational Models
(
Poster
)
>
|
Rafael Rafailov 路 Tianhe (Kevin) Yu 路 Aravind Rajeswaran 路 Chelsea Finn 馃敆 |
-
|
Discovering and Achieving Goals with World Models
(
Poster
)
>
|
Russell Mendonca 路 Oleh Rybkin 路 Kostas Daniilidis 路 Danijar Hafner 路 Deepak Pathak 馃敆 |
-
|
Decision Transformer: Reinforcement Learning via Sequence Modeling
(
Poster
)
>
|
Lili Chen 路 Kevin Lu 路 Aravind Rajeswaran 路 Kimin Lee 路 Aditya Grover 路 Michael Laskin 路 Pieter Abbeel 路 Aravind Srinivas 路 Igor Mordatch 馃敆 |
-
|
Episodic Memory for Subjective-Timescale Models
(
Poster
)
>
|
Alexey Zakharov 路 Matthew Crosby 路 Zafeirios Fountas 馃敆 |
-
|
Reinforcement Learning as One Big Sequence Modeling Problem
(
Poster
)
>
|
Michael Janner 路 Qiyang Li 路 Sergey Levine 馃敆 |
-
|
Exploration-Driven Representation Learning in Reinforcement Learning
(
Poster
)
>
|
Akram Erraqabi 路 Mingde Zhao 路 Marlos C. Machado 路 Yoshua Bengio 路 Sainbayar Sukhbaatar 路 Ludovic Denoyer 路 Alessandro Lazaric 馃敆 |
-
|
Learning to Represent State with Perceptual Schemata
(
Poster
)
>
|
Wilka T Carvalho 路 Murray Shanahan 馃敆 |
-
|
Data-Efficient Exploration with Self Play for Atari
(
Poster
)
>
|
Michael Laskin 路 Catherine Cang 路 Ryan Rudes 路 Pieter Abbeel 馃敆 |
-
|
Intrinsic Control of Variational Beliefs in Dynamic Partially-Observed Visual Environments
(
Poster
)
>
|
Nicholas Rhinehart 路 Jenny Wang 路 Glen Berseth 路 John Co-Reyes 路 Danijar Hafner 路 Chelsea Finn 路 Sergey Levine 馃敆 |
-
|
Discovering Diverse Nearly Optimal Policies with Successor Features
(
Poster
)
>
|
Tom Zahavy 路 Brendan O'Donoghue 路 Andre Barreto 路 Sebastian Flennerhag 路 Vlad Mnih 路 Satinder Singh 馃敆 |
-
|
Reward is enough for convex MDPs
(
Poster
)
>
|
Tom Zahavy 路 Brendan O'Donoghue 路 Guillaume Desjardins 路 Satinder Singh 馃敆 |
-
|
Unsupervised Skill-Discovery and Skill-Learning in Minecraft
(
Poster
)
>
|
Juan Jos茅 Nieto 路 Roger Creus Castanyer 路 Xavier Giro-i-Nieto 馃敆 |
-
|
Learning Task-Relevant Representations with Selective Contrast for Reinforcement Learning in a Real-World Application
(
Poster
)
>
|
Flemming Brieger 路 Daniel A Braun 路 Sascha Lange 馃敆 |
-
|
Exploration via Empowerment Gain: Combining Novelty, Surprise and Learning Progress
(
Poster
)
>
|
Philip Becker-Ehmck 路 Maximilian Karl 路 Jan Peters 路 Patrick van der Smagt 馃敆 |
-
|
MASAI: Multi-agent Summative Assessment Improvement for Unsupervised Environment Design
(
Poster
)
>
|
Yiping Wang 路 Brandon Haworth 馃敆 |
-
|
Explore and Control with Adversarial Surprise
(
Poster
)
>
|
Arnaud Fickinger 路 Natasha Jaques 路 Samyak Parajuli 路 Michael Chang 路 Nicholas Rhinehart 路 Glen Berseth 路 Stuart Russell 路 Sergey Levine 馃敆 |
-
|
When Does Overconservatism Hurt Offline Learning?
(
Poster
)
>
|
Karush Suri 路 Florian Shkurti 馃敆 |
-
|
Hierarchical Few-Shot Imitation with Skill Transition Models
(
Poster
)
>
|
kourosh hakhamaneshi 路 Ruihan Zhao 路 Albert Zhan 路 Pieter Abbeel 路 Michael Laskin 馃敆 |
-
|
Exploration and preference satisfaction trade-off in reward-free learning
(
Poster
)
>
|
Noor Sajid 路 Panagiotis Tigas 路 Alexey Zakharov 路 Zafeirios Fountas 路 Karl Friston 馃敆 |
-
|
Visualizing MuZero Models
(
Poster
)
>
|
joery de Vries 路 Ken Voskuil 路 Thomas M Moerland 路 Aske Plaat 馃敆 |
-
|
Did I do that? Blame as a means to identify controlled effects in reinforcement learning
(
Poster
)
>
|
Oriol Corcoll 路 Raul Vicente 馃敆 |