Skip to yearly menu bar Skip to main content


Session

Causal Learning

Moderator: Been Kim

Abstract:

Chat is not available.

Thu 22 July 20:30 - 20:35 PDT

Spotlight
A Proxy Variable View of Shared Confounding

Yixin Wang · David Blei

Causal inference from observational data can be biased by unobserved confounders. Confounders—the variables that affect both the treatments and the outcome—induce spurious non-causal correlations between the two. Without additional conditions, unobserved confounders generally make causal quantities hard to identify. In this paper, we focus on the setting where there are many treatments with shared confounding, and we study under what conditions is causal identification possible. The key observation is that we can view subsets of treatments as proxies of the unobserved confounder and identify the intervention distributions of the rest. Moreover, while existing identification formulas for proxy variables involve solving integral equations, we show that one can circumvent the need for such solutions by directly modeling the data. Finally, we extend these results to an expanded class of causal graphs, those with other confounders and selection variables.

Thu 22 July 20:35 - 20:40 PDT

Spotlight
Budgeted Heterogeneous Treatment Effect Estimation

Tian Qin · Tian-Zuo Wang · Zhi-Hua Zhou

Heterogeneous treatment effect (HTE) estimation is receiving increasing interest due to its important applications in fields such as healthcare, economics, and education. Current HTE estimation methods generally assume the existence of abundant observational data, though the acquisition of such data can be costly. In some real scenarios, it is easy to access the pre-treatment covariates and treatment assignments, but expensive to obtain the factual outcomes. To make HTE estimation more practical, in this paper, we examine the problem of estimating HTEs with a budget constraint on observational data, aiming to obtain accurate HTE estimates with limited costs. By deriving an informative generalization bound and connecting to active learning, we propose an effective and efficient method which is validated both theoretically and empirically.

Thu 22 July 20:40 - 20:45 PDT

Spotlight
Permutation Weighting

David Arbour · Drew Dimmery · Arjun Sondhi

A commonly applied approach for estimating causal effects from observational data is to apply weights which render treatments independent of observed pre-treatment covariates. Recently emphasis has been placed on deriving balancing weights which explicitly target this independence condition. In this work we introduce permutation weighting, a method for estimating balancing weights using a standard binary classifier (regardless of cardinality of treatment). A large class of probabilistic classifiers may be used in this method; the choice of loss for the classifier implies the particular definition of balance. We bound bias and variance in terms of the excess risk of the classifier, show that these disappear asymptotically, and demonstrate that our classification problem directly minimizes imbalance. Additionally, hyper-parameter tuning and model selection can be performed with standard cross-validation methods. Empirical evaluations indicate that permutation weighting provides favorable performance in comparison to existing methods.

Thu 22 July 20:45 - 20:50 PDT

Spotlight
Valid Causal Inference with (Some) Invalid Instruments

Jason Hartford · Victor Veitch · Dhanya Sridhar · Kevin Leyton-Brown

Instrumental variable methods provide a powerful approach to estimating causal effects in the presence of unobserved confounding. But a key challenge when applying them is the reliance on untestable "exclusion" assumptions that rule out any relationship between the instrument variable and the response that is not mediated by the treatment. In this paper, we show how to perform consistent IV estimation despite violations of the exclusion assumption. In particular, we show that when one has multiple candidate instruments, only a majority of these candidates---or, more generally, the modal candidate-response relationship---needs to be valid to estimate the causal effect. Our approach uses an estimate of the modal prediction from an ensemble of instrumental variable estimators. The technique is simple to apply and is "black-box" in the sense that it may be used with any instrumental variable estimator as long as the treatment effect is identified for each valid instrument independently. As such, it is compatible with recent machine-learning based estimators that allow for the estimation of conditional average treatment effects (CATE) on complex, high dimensional data. Experimentally, we achieve accurate estimates of conditional average treatment effects using an ensemble of deep network-based estimators, including on a challenging simulated Mendelian Randomization problem.

Thu 22 July 20:50 - 20:55 PDT

Spotlight
Operationalizing Complex Causes: A Pragmatic View of Mediation

Limor Gultchin · David Watson · Matt J. Kusner · Ricardo Silva

We examine the problem of causal response estimation for complex objects (e.g., text, images, genomics). In this setting, classical \emph{atomic} interventions are often not available (e.g., changes to characters, pixels, DNA base-pairs). Instead, we only have access to indirect or \emph{crude} interventions (e.g., enrolling in a writing program, modifying a scene, applying a gene therapy). In this work, we formalize this problem and provide an initial solution. Given a collection of candidate mediators, we propose (a) a two-step method for predicting the causal responses of crude interventions; and (b) a testing procedure to identify mediators of crude interventions. We demonstrate, on a range of simulated and real-world-inspired examples, that our approach allows us to efficiently estimate the effect of crude interventions with limited data from new treatment regimes.

Thu 22 July 20:55 - 21:00 PDT

Q&A
Q&A