Skip to yearly menu bar Skip to main content


Session

Security and Transparency

Moderator: Wei-Fang Sun

Abstract:

Chat is not available.

Thu 22 July 19:00 - 19:05 PDT

Spotlight
Explaining Time Series Predictions with Dynamic Masks

Jonathan Crabbé · Mihaela van der Schaar

How can we explain the predictions of a machine learning model? When the data is structured as a multivariate time series, this question induces additional difficulties such as the necessity for the explanation to embody the time dependency and the large number of inputs. To address these challenges, we propose dynamic masks (Dynamask). This method produces instance-wise importance scores for each feature at each time step by fitting a perturbation mask to the input sequence. In order to incorporate the time dependency of the data, Dynamask studies the effects of dynamic perturbation operators. In order to tackle the large number of inputs, we propose a scheme to make the feature selection parsimonious (to select no more feature than necessary) and legible (a notion that we detail by making a parallel with information theory). With synthetic and real-world data, we demonstrate that the dynamic underpinning of Dynamask, together with its parsimony, offer a neat improvement in the identification of feature importance over time. The modularity of Dynamask makes it ideal as a plug-in to increase the transparency of a wide range of machine learning models in areas such as medicine and finance, where time series are abundant.

Thu 22 July 19:05 - 19:10 PDT

Spotlight
Neural Tangent Generalization Attacks

Chia-Hung Yuan · Shan-Hung (Brandon) Wu

The remarkable performance achieved by Deep Neural Networks (DNNs) in many applications is followed by the rising concern about data privacy and security. Since DNNs usually require large datasets to train, many practitioners scrape data from external sources such as the Internet. However, an external data owner may not be willing to let this happen, causing legal or ethical issues. In this paper, we study the generalization attacks against DNNs, where an attacker aims to slightly modify training data in order to spoil the training process such that a trained network lacks generalizability. These attacks can be performed by data owners and protect data from unexpected use. However, there is currently no efficient generalization attack against DNNs due to the complexity of a bilevel optimization involved. We propose the Neural Tangent Generalization Attack (NTGA) that, to the best of our knowledge, is the first work enabling clean-label, black-box generalization attack against DNNs. We conduct extensive experiments, and the empirical results demonstrate the effectiveness of NTGA. Our code and perturbed datasets are available at: https://github.com/lionelmessi6410/ntga.

Thu 22 July 19:10 - 19:15 PDT

Spotlight
Understanding and Mitigating Accuracy Disparity in Regression

Jianfeng Chi · Yuan Tian · Geoff Gordon · Han Zhao

With the widespread deployment of large-scale prediction systems in high-stakes domains, e.g., face recognition, criminal justice, etc., disparity on prediction accuracy between different demographic subgroups has called for fundamental understanding on the source of such disparity and algorithmic intervention to mitigate it. In this paper, we study the accuracy disparity problem in regression. To begin with, we first propose an error decomposition theorem, which decomposes the accuracy disparity into the distance between marginal label distributions and the distance between conditional representations, to help explain why such accuracy disparity appears in practice. Motivated by this error decomposition and the general idea of distribution alignment with statistical distances, we then propose an algorithm to reduce this disparity, and analyze its game-theoretic optima of the proposed objective functions. To corroborate our theoretical findings, we also conduct experiments on five benchmark datasets. The experimental results suggest that our proposed algorithms can effectively mitigate accuracy disparity while maintaining the predictive power of the regression models.

Thu 22 July 19:15 - 19:20 PDT

Spotlight
Backdoor Scanning for Deep Neural Networks through K-Arm Optimization

Guangyu Shen · Yingqi Liu · Guanhong Tao · Shengwei An · Qiuling Xu · Siyuan Cheng · Shiqing Ma · Xiangyu Zhang

Back-door attack poses a severe threat to deep learning systems. It injects hidden malicious behaviors to a model such that any input stamped with a special pattern can trigger such behaviors. Detecting back-door is hence of pressing need. Many existing defense techniques use optimization to generate the smallest input pattern that forces the model to misclassify a set of benign inputs injected with the pattern to a target label. However, the complexity is quadratic to the number of class labels such that they can hardly handle models with many classes. Inspired by Multi-Arm Bandit in Reinforcement Learning, we propose a K-Arm optimization method for backdoor detection. By iteratively and stochastically selecting the most promising labels for optimization with the guidance of an objective function, we substantially reduce the complexity, allowing to handle models with many classes. Moreover, by iteratively refining the selection of labels to optimize, it substantially mitigates the uncertainty in choosing the right labels, improving detection accuracy. At the time of submission, the evaluation of our method on over 4000 models in the IARPA TrojAI competition from round 1 to the latest round 4 achieves top performance on the leaderboard. Our technique also supersedes five state-of-the-art techniques in terms of accuracy and the scanning time needed. The code of our work is available at https://github.com/PurduePAML/K-ARMBackdoorOptimization

Thu 22 July 19:20 - 19:25 PDT

Spotlight
DANCE: Enhancing saliency maps using decoys

Yang Lu · Wenbo Guo · Xinyu Xing · William Stafford Noble

Saliency methods can make deep neural network predictions more interpretable by identifying a set of critical features in an input sample, such as pixels that contribute most strongly to a prediction made by an image classifier. Unfortunately, recent evidence suggests that many saliency methods poorly perform, especially in situations where gradients are saturated, inputs contain adversarial perturbations, or predictions rely upon inter-feature dependence. To address these issues, we propose a framework, DANCE, which improves the robustness of saliency methods by following a two-step procedure. First, we introduce a perturbation mechanism that subtly varies the input sample without changing its intermediate representations. Using this approach, we can gather a corpus of perturbed ("decoy") data samples while ensuring that the perturbed and original input samples follow similar distributions. Second, we compute saliency maps for the decoy samples and propose a new method to aggregate saliency maps. With this design, we offset influence of gradient saturation. From a theoretical perspective, we show that the aggregated saliency map not only captures inter-feature dependence but, more importantly, is robust against previously described adversarial perturbation methods. Our empirical results suggest that, both qualitatively and quantitatively, DANCE outperforms existing methods in a variety of application domains.

Thu 22 July 19:25 - 19:30 PDT

Spotlight
Blind Pareto Fairness and Subgroup Robustness

Natalia Martinez Gil · Martin Bertran · Afroditi Papadaki · Miguel Rodrigues · Guillermo Sapiro

Much of the work in the field of group fairness addresses disparities between predefined groups based on protected features such as gender, age, and race, which need to be available at train, and often also at test, time. These approaches are static and retrospective, since algorithms designed to protect groups identified a priori cannot anticipate and protect the needs of different at-risk groups in the future. In this work we analyze the space of solutions for worst-case fairness beyond demographics, and propose Blind Pareto Fairness (BPF), a method that leverages no-regret dynamics to recover a fair minimax classifier that reduces worst-case risk of any potential subgroup of sufficient size, and guarantees that the remaining population receives the best possible level of service. BPF addresses fairness beyond demographics, that is, it does not rely on predefined notions of at-risk groups, neither at train nor at test time. Our experimental results show that the proposed framework improves worst-case risk in multiple standard datasets, while simultaneously providing better levels of service for the remaining population. The code is available at github.com/natalialmg/BlindParetoFairness

Thu 22 July 19:30 - 19:35 PDT

Spotlight
Testing DNN-based Autonomous Driving Systems under Critical Environmental Conditions

Zhong Li · Minxue Pan · Tian Zhang · Xuandong Li

Due to the increasing usage of Deep Neural Network (DNN) based autonomous driving systems (ADS) where erroneous or unexpected behaviours can lead to catastrophic accidents, testing such systems is of growing importance. Existing approaches often just focus on finding erroneous behaviours and have not thoroughly studied the impact of environmental conditions. In this paper, we propose to test DNN-based ADS under different environmental conditions to identify the critical ones, that is, the environmental conditions under which the ADS are more prone to errors. To tackle the problem of the space of environmental conditions being extremely large, we present a novel approach named TACTIC that employs the search-based method to identify critical environmental conditions generated by an image-to-image translation model. Large-scale experiments show that TACTIC can effectively identify critical environmental conditions and produce realistic testing images, and meanwhile, reveal more erroneous behaviours compared to existing approaches.

Thu 22 July 19:35 - 19:40 PDT

Spotlight
On the Problem of Underranking in Group-Fair Ranking

Sruthi Gorantla · Amit Jayant Deshpande · Anand Louis

Bias in ranking systems, especially among the top ranks, can worsen social and economic inequalities, polarize opinions, and reinforce stereotypes. On the other hand, a bias correction for minority groups can cause more harm if perceived as favoring group-fair outcomes over meritocracy. Most group-fair ranking algorithms post-process a given ranking and output a group-fair ranking. In this paper, we formulate the problem of underranking in group-fair rankings based on how close the group-fair rank of each item is to its original rank, and prove a lower bound on the trade-off achievable for simultaneous underranking and group fairness in ranking. We give a fair ranking algorithm that takes any given ranking and outputs another ranking with simultaneous underranking and group fairness guarantees comparable to the lower bound we prove. Our experimental results confirm the theoretical trade-off between underranking and group fairness, and also show that our algorithm achieves the best of both when compared to the state-of-the-art baselines.

Thu 22 July 19:40 - 19:45 PDT

Spotlight
Testing Group Fairness via Optimal Transport Projections

Nian Si · Karthyek Murthy · Jose Blanchet · Viet Anh Nguyen

We have developed a statistical testing framework to detect if a given machine learning classifier fails to satisfy a wide range of group fairness notions. Our test is a flexible, interpretable, and statistically rigorous tool for auditing whether exhibited biases are intrinsic to the algorithm or simply due to the randomness in the data. The statistical challenges, which may arise from multiple impact criteria that define group fairness and which are discontinuous on model parameters, are conveniently tackled by projecting the empirical measure to the set of group-fair probability models using optimal transport. This statistic is efficiently computed using linear programming, and its asymptotic distribution is explicitly obtained. The proposed framework can also be used to test for composite fairness hypotheses and fairness with multiple sensitive attributes. The optimal transport testing formulation improves interpretability by characterizing the minimal covariate perturbations that eliminate the bias observed in the audit.

Thu 22 July 19:45 - 19:50 PDT

Q&A
Q&A