Skip to yearly menu bar Skip to main content


Session

Representation Learning 5

Moderator: Deepak Pathak

Abstract:

Chat is not available.

Thu 22 July 18:00 - 18:20 PDT

Oral
Unsupervised Representation Learning via Neural Activation Coding

Yookoon Park · Sangho Lee · Gunhee Kim · David Blei

We present neural activation coding (NAC) as a novel approach for learning deep representations from unlabeled data for downstream applications. We argue that the deep encoder should maximize its nonlinear expressivity on the data for downstream predictors to take full advantage of its representation power. To this end, NAC maximizes the mutual information between activation patterns of the encoder and the data over a noisy communication channel. We show that learning for a noise-robust activation code increases the number of distinct linear regions of ReLU encoders, hence the maximum nonlinear expressivity. More interestingly, NAC learns both continuous and discrete representations of data, which we respectively evaluate on two downstream tasks: (i) linear classification on CIFAR-10 and ImageNet-1K and (ii) nearest neighbor retrieval on CIFAR-10 and FLICKR-25K. Empirical results show that NAC attains better or comparable performance on both tasks over recent baselines including SimCLR and DistillHash. In addition, NAC pretraining provides significant benefits to the training of deep generative models. Our code is available at https://github.com/yookoon/nac.

Thu 22 July 18:20 - 18:25 PDT

Spotlight
Demystifying Inductive Biases for (Beta-)VAE Based Architectures

Dominik Zietlow · Michal Rolinek · Georg Martius

The performance of Beta-Variational-Autoencoders and their variants on learning semantically meaningful, disentangled representations is unparalleled. On the other hand, there are theoretical arguments suggesting the impossibility of unsupervised disentanglement. In this work, we shed light on the inductive bias responsible for the success of VAE-based architectures. We show that in classical datasets the structure of variance, induced by the generating factors, is conveniently aligned with the latent directions fostered by the VAE objective. This builds the pivotal bias on which the disentangling abilities of VAEs rely. By small, elaborate perturbations of existing datasets, we hide the convenient correlation structure that is easily exploited by a variety of architectures. To demonstrate this, we construct modified versions of standard datasets in which (i) the generative factors are perfectly preserved; (ii) each image undergoes a mild transformation causing a small change of variance; (iii) the leading VAE-based disentanglement architectures fail to produce disentangled representations whilst the performance of a non-variational method remains unchanged.

Thu 22 July 18:25 - 18:30 PDT

Spotlight
Examining and Combating Spurious Features under Distribution Shift

Chunting Zhou · Xuezhe Ma · Paul Michel · Graham Neubig

A central goal of machine learning is to learn robust representations that capture the fundamental relationship between inputs and output labels. However, minimizing training errors over finite or biased datasets results in models latching on to spurious correlations between the training input/output pairs that are not fundamental to the problem at hand. In this paper, we define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics. We prove that even when there is only bias of the input distribution (i.e. covariate shift), models can still pick up spurious features from their training data. Group distributionally robust optimization (DRO) provides an effective tool to alleviate covariate shift by minimizing the worst-case training losses over a set of pre-defined groups. Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations that occur in the data. To address this, we further propose to minimize the worst-case losses over a more flexible set of distributions that are defined on the joint distribution of groups and instances, instead of treating each group as a whole at optimization time. Through extensive experiments on one image and two language tasks, we show that our model is significantly more robust than comparable baselines under various partitions.

Thu 22 July 18:30 - 18:35 PDT

Spotlight
Unsupervised Part Representation by Flow Capsules

Sara Sabour Rouh Aghdam · Andrea Tagliasacchi · Soroosh Yazdani · Geoffrey Hinton · David Fleet

Capsule networks aim to parse images into a hierarchy of objects, parts and relations. While promising, they remain limited by an inability to learn effective low level part descriptions. To address this issue we propose a way to learn primary capsule encoders that detect atomic parts from a single image. During training we exploit motion as a powerful perceptual cue for part definition, with an expressive decoder for part generation within a layered image model with occlusion. Experiments demonstrate robust part discovery in the presence of multiple objects, cluttered backgrounds, and occlusion. The learned part decoder is shown to infer the underlying shape masks, effectively filling in occluded regions of the detected shapes. We evaluate FlowCapsules on unsupervised part segmentation and unsupervised image classification.

Thu 22 July 18:35 - 18:40 PDT

Spotlight
Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection

Nadine Chang · Zhiding Yu · Yu-Xiong Wang · Anima Anandkumar · Sanja Fidler · Jose Alvarez

Training on datasets with long-tailed distributions has been challenging for major recognition tasks such as classification and detection. To deal with this challenge, image resampling is typically introduced as a simple but effective approach. However, we observe that long-tailed detection differs from classification since multiple classes may be present in one image. As a result, image resampling alone is not enough to yield a sufficiently balanced distribution at the object-level. We address object-level resampling by introducing an object-centric sampling strategy based on a dynamic, episodic memory bank. Our proposed strategy has two benefits: 1) convenient object-level resampling without significant extra computation, and 2) implicit feature-level augmentation from model updates. We show that image-level and object-level resamplings are both important, and thus unify them with a joint resampling strategy. Our method achieves state-of-the-art performance on the rare categories of LVIS, with 1.89% and 3.13% relative improvements over Forest R-CNN on detection and instance segmentation.

Thu 22 July 18:40 - 18:45 PDT

Spotlight
Efficient Iterative Amortized Inference for Learning Symmetric and Disentangled Multi-Object Representations

Patrick Emami · Pan He · Sanjay Ranka · Anand Rangarajan

Unsupervised multi-object representation learning depends on inductive biases to guide the discovery of object-centric representations that generalize. However, we observe that methods for learning these representations are either impractical due to long training times and large memory consumption or forego key inductive biases. In this work, we introduce EfficientMORL, an efficient framework for the unsupervised learning of object-centric representations. We show that optimization challenges caused by requiring both symmetry and disentanglement can in fact be addressed by high-cost iterative amortized inference by designing the framework to minimize its dependence on it. We take a two-stage approach to inference: first, a hierarchical variational autoencoder extracts symmetric and disentangled representations through bottom-up inference, and second, a lightweight network refines the representations with top-down feedback. The number of refinement steps taken during training is reduced following a curriculum, so that at test time with zero steps the model achieves 99.1% of the refined decomposition performance. We demonstrate strong object decomposition and disentanglement on the standard multi-object benchmark while achieving nearly an order of magnitude faster training and test time inference over the previous state-of-the-art model.

Thu 22 July 18:45 - 18:50 PDT

Spotlight
Temporal Predictive Coding For Model-Based Planning In Latent Space

Tung Nguyen · Rui Shu · Tuan Pham · Hung Bui · Stefano Ermon

High-dimensional observations are a major challenge in the application of model-based reinforcement learning (MBRL) to real-world environments. To handle high-dimensional sensory inputs, existing approaches use representation learning to map high-dimensional observations into a lower-dimensional latent space that is more amenable to dynamics estimation and planning. In this work, we present an information-theoretic approach that employs temporal predictive coding to encode elements in the environment that can be predicted across time. Since this approach focuses on encoding temporally-predictable information, we implicitly prioritize the encoding of task-relevant components over nuisance information within the environment that are provably task-irrelevant. By learning this representation in conjunction with a recurrent state space model, we can then perform planning in latent space. We evaluate our model on a challenging modification of standard DMControl tasks where the background is replaced with natural videos that contain complex but irrelevant information to the planning task. Our experiments show that our model is superior to existing methods in the challenging complex-background setting while remaining competitive with current state-of-the-art models in the standard setting.

Thu 22 July 18:50 - 18:55 PDT

Q&A
Q&A