Skip to yearly menu bar Skip to main content


Session

Algorithms 4

Moderator: Cheng Fu

Abstract:

Chat is not available.

Thu 22 July 18:00 - 18:20 PDT

Oral
Learn-to-Share: A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing

Cheng Fu · Hanxian Huang · Xinyun Chen · Yuandong Tian · Jishen Zhao

Task-specific fine-tuning on pre-trained transformers has achieved performance breakthroughs in multiple NLP tasks. Yet, as both computation and parameter size grows linearly with the number of sub-tasks, it is increasingly difficult to adopt such methods to the real world due to unrealistic memory and computation overhead on computing devices. Previous works on fine-tuning focus on reducing the growing parameter size to save storage cost by parameter sharing. However, compared to storage, the constraint of computation is a more critical issue with the fine-tuning models in modern computing environments. In this work, we propose LeTS, a framework that leverages both computation and parameter sharing across multiple tasks. Compared to traditional fine-tuning, LeTS proposes a novel neural architecture that contains a fixed pre-trained transformer model, plus learnable additive components for sub-tasks. The learnable components reuse the intermediate activations in the fixed pre-trained model, decoupling computation dependency. Differentiable neural architecture search is used to determine a task-specific computation sharing scheme, and a novel early stage pruning is applied to additive components for sparsity to achieve parameter sharing. Extensive experiments show that with 1.4% of extra parameters per task, LeTS reduces the computation by 49.5% on GLUE benchmarks with only 0.2% accuracy loss compared to full fine-tuning.

Thu 22 July 18:20 - 18:25 PDT

Spotlight
Latent Space Energy-Based Model of Symbol-Vector Coupling for Text Generation and Classification

Bo Pang · Ying Nian Wu

We propose a latent space energy-based prior model for text generation and classification. The model stands on a generator network that generates the text sequence based on a continuous latent vector. The energy term of the prior model couples a continuous latent vector and a symbolic one-hot vector, so that discrete category can be inferred from the observed example based on the continuous latent vector. Such a latent space coupling naturally enables incorporation of information bottleneck regularization to encourage the continuous latent vector to extract information from the observed example that is informative of the underlying category. In our learning method, the symbol-vector coupling, the generator network and the inference network are learned jointly. Our model can be learned in an unsupervised setting where no category labels are provided. It can also be learned in semi-supervised setting where category labels are provided for a subset of training examples. Our experiments demonstrate that the proposed model learns well-structured and meaningful latent space, which (1) guides the generator to generate text with high quality, diversity, and interpretability, and (2) effectively classifies text.

Thu 22 July 18:25 - 18:30 PDT

Spotlight
Policy Caches with Successor Features

Mark Nemecek · Ron Parr

Transfer in reinforcement learning is based on the idea that it is possible to use what is learned in one task to improve the learning process in another task. For transfer between tasks which share transition dynamics but differ in reward function, successor features have been shown to be a useful representation which allows for efficient computation of action-value functions for previously-learned policies in new tasks. These functions induce policies in the new tasks, so an agent may not need to learn a new policy for each new task it encounters, especially if it is allowed some amount of suboptimality in those tasks. We present new bounds for the performance of optimal policies in a new task, as well as an approach to use these bounds to decide, when presented with a new task, whether to use cached policies or learn a new policy.

Thu 22 July 18:30 - 18:35 PDT

Spotlight
Meta-Thompson Sampling

Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari

Efficient exploration in bandits is a fundamental online learning problem. We propose a variant of Thompson sampling that learns to explore better as it interacts with bandit instances drawn from an unknown prior. The algorithm meta-learns the prior and thus we call it MetaTS. We propose several efficient implementations of MetaTS and analyze it in Gaussian bandits. Our analysis shows the benefit of meta-learning and is of a broader interest, because we derive a novel prior-dependent Bayes regret bound for Thompson sampling. Our theory is complemented by empirical evaluation, which shows that MetaTS quickly adapts to the unknown prior.

Thu 22 July 18:35 - 18:40 PDT

Spotlight
Integrated Defense for Resilient Graph Matching

Jiaxiang Ren · Zijie Zhang · Jiayin Jin · Xin Zhao · Sixing Wu · Yang Zhou · Yelong Shen · Tianshi Che · Ruoming Jin · Dejing Dou

A recent study has shown that graph matching models are vulnerable to adversarial manipulation of their input which is intended to cause a mismatching. Nevertheless, there is still a lack of a comprehensive solution for further enhancing the robustness of graph matching against adversarial attacks. In this paper, we identify and study two types of unique topology attacks in graph matching: inter-graph dispersion and intra-graph assembly attacks. We propose an integrated defense model, IDRGM, for resilient graph matching with two novel defense techniques to defend against the above two attacks simultaneously. A detection technique of inscribed simplexes in the hyperspheres consisting of multiple matched nodes is proposed to tackle inter-graph dispersion attacks, in which the distances among the matched nodes in multiple graphs are maximized to form regular simplexes. A node separation method based on phase-type distribution and maximum likelihood estimation is developed to estimate the distribution of perturbed graphs and separate the nodes within the same graphs over a wide space, for defending intra-graph assembly attacks, such that the interference from the similar neighbors of the perturbed nodes is significantly reduced. We evaluate the robustness of our IDRGM model on real datasets against state-of-the-art algorithms.

Thu 22 July 18:40 - 18:45 PDT

Spotlight
Supervised Tree-Wasserstein Distance

Yuki Takezawa · Ryoma Sato · Makoto Yamada

To measure the similarity of documents, the Wasserstein distance is a powerful tool, but it requires a high computational cost. Recently, for fast computation of the Wasserstein distance, methods for approximating the Wasserstein distance using a tree metric have been proposed. These tree-based methods allow fast comparisons of a large number of documents; however, they are unsupervised and do not learn task-specific distances. In this work, we propose the Supervised Tree-Wasserstein (STW) distance, a fast, supervised metric learning method based on the tree metric. Specifically, we rewrite the Wasserstein distance on the tree metric by the parent-child relationships of a tree, and formulate it as a continuous optimization problem using a contrastive loss. Experimentally, we show that the STW distance can be computed fast, and improves the accuracy of document classification tasks. Furthermore, the STW distance is formulated by matrix multiplications, runs on a GPU, and is suitable for batch processing. Therefore, we show that the STW distance is extremely efficient when comparing a large number of documents.

Thu 22 July 18:45 - 18:50 PDT

Spotlight
Which transformer architecture fits my data? A vocabulary bottleneck in self-attention

Noam Wies · Yoav Levine · Daniel Jannai · Amnon Shashua

After their successful debut in natural language processing, Transformer architectures are now becoming the de-facto standard in many domains. An obstacle for their deployment over new modalities is the architectural configuration: the optimal depth-to-width ratio has been shown to dramatically vary across data types (i.e., 10x larger over images than over language). We theoretically predict the existence of an embedding rank bottleneck that limits the contribution of self-attention width to the Transformer expressivity. We thus directly tie the input vocabulary size and rank to the optimal depth-to-width ratio, since a small vocabulary size or rank dictates an added advantage of depth over width. We empirically demonstrate the existence of this bottleneck and its implications on the depth-to-width interplay of Transformer architectures, linking the architecture variability across domains to the often glossed-over usage of different vocabulary sizes or embedding ranks in different domains. As an additional benefit, our rank bottlenecking framework allows us to identify size redundancies of 25%-50% in leading NLP models such as ALBERT and T5.

Thu 22 July 18:50 - 18:55 PDT

Q&A
Q&A