Skip to yearly menu bar Skip to main content


Session

Multi-task Learning 2

Moderator: Qibin Zhao

Abstract:
Chat is not available.

Thu 22 July 18:00 - 18:20 PDT

Oral
WILDS: A Benchmark of in-the-Wild Distribution Shifts

Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang

Distribution shifts---where the training distribution differs from the test distribution---can substantially degrade the accuracy of machine learning (ML) systems deployed in the wild. Despite their ubiquity in the real-world deployments, these distribution shifts are under-represented in the datasets widely used in the ML community today. To address this gap, we present WILDS, a curated benchmark of 10 datasets reflecting a diverse range of distribution shifts that naturally arise in real-world applications, such as shifts across hospitals for tumor identification; across camera traps for wildlife monitoring; and across time and location in satellite imaging and poverty mapping. On each dataset, we show that standard training yields substantially lower out-of-distribution than in-distribution performance. This gap remains even with models trained by existing methods for tackling distribution shifts, underscoring the need for new methods for training models that are more robust to the types of distribution shifts that arise in practice. To facilitate method development, we provide an open-source package that automates dataset loading, contains default model architectures and hyperparameters, and standardizes evaluations. The full paper, code, and leaderboards are available at https://wilds.stanford.edu.

Thu 22 July 18:20 - 18:25 PDT

Spotlight
Improving Generalization in Meta-learning via Task Augmentation

Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li

Meta-learning has proven to be a powerful paradigm for transferring the knowledge from previous tasks to facilitate the learning of a novel task. Current dominant algorithms train a well-generalized model initialization which is adapted to each task via the support set. The crux lies in optimizing the generalization capability of the initialization, which is measured by the performance of the adapted model on the query set of each task. Unfortunately, this generalization measure, evidenced by empirical results, pushes the initialization to overfit the meta-training tasks, which significantly impairs the generalization and adaptation to novel tasks. To address this issue, we actively augment a meta-training task with “more data” when evaluating the generalization. Concretely, we propose two task augmentation methods, including MetaMix and Channel Shuffle. MetaMix linearly combines features and labels of samples from both the support and query sets. For each class of samples, Channel Shuffle randomly replaces a subset of their channels with the corresponding ones from a different class. Theoretical studies show how task augmentation improves the generalization of meta-learning. Moreover, both MetaMix and Channel Shuffle outperform state-of-the-art results by a large margin across many datasets and are compatible with existing meta-learning algorithms.

Thu 22 July 18:25 - 18:30 PDT

Spotlight
Improving Predictors via Combination Across Diverse Task Categories

Kwang In Kim

Predictor combination is the problem of improving a task predictor using predictors of other tasks when the forms of individual predictors are unknown. Previous work approached this problem by nonparametrically assessing predictor relationships based on their joint evaluations on a shared sample. This limits their application to cases where all predictors are defined on the same task category, e.g. all predictors estimate attributes of shoes. We present a new predictor combination algorithm that overcomes this limitation. Our algorithm aligns the heterogeneous domains of different predictors in a shared latent space to facilitate comparisons of predictors independently of the domains on which they are originally defined. We facilitate this by a new data alignment scheme that matches data distributions across task categories. Based on visual attribute ranking experiments on datasets that span diverse task categories (e.g. shoes and animals), we demonstrate that our approach often significantly improves the performances of the initial predictors.

Thu 22 July 18:30 - 18:35 PDT

Spotlight
MetaCURE: Meta Reinforcement Learning with Empowerment-Driven Exploration

Jin Zhang · Jianhao Wang · Hao Hu · Tong Chen · Yingfeng Chen · Changjie Fan · Chongjie Zhang

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

Thu 22 July 18:35 - 18:40 PDT

Spotlight
Offline Meta-Reinforcement Learning with Advantage Weighting

Eric Mitchell · Rafael Rafailov · Xue Bin Peng · Sergey Levine · Chelsea Finn

This paper introduces the offline meta-reinforcement learning (offline meta-RL) problem setting and proposes an algorithm that performs well in this setting. Offline meta-RL is analogous to the widely successful supervised learning strategy of pre-training a model on a large batch of fixed, pre-collected data (possibly from various tasks) and fine-tuning the model to a new task with relatively little data. That is, in offline meta-RL, we meta-train on fixed, pre-collected data from several tasks and adapt to a new task with a very small amount (less than 5 trajectories) of data from the new task. By nature of being offline, algorithms for offline meta-RL can utilize the largest possible pool of training data available and eliminate potentially unsafe or costly data collection during meta-training. This setting inherits the challenges of offline RL, but it differs significantly because offline RL does not generally consider a) transfer to new tasks or b) limited data from the test task, both of which we face in offline meta-RL. Targeting the offline meta-RL setting, we propose Meta-Actor Critic with Advantage Weighting (MACAW). MACAW is an optimization-based meta-learning algorithm that uses simple, supervised regression objectives for both the inner and outer loop of meta-training. On offline variants of common meta-RL benchmarks, we empirically find that this approach enables fully offline meta-reinforcement learning and achieves notable gains over prior methods.

Thu 22 July 18:40 - 18:45 PDT

Spotlight
Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation

Haoxiang Wang · Han Zhao · Bo Li

Multi-task learning (MTL) aims to improve the generalization of several related tasks by learning them jointly. As a comparison, in addition to the joint training scheme, modern meta-learning allows unseen tasks with limited labels during the test phase, in the hope of fast adaptation over them. Despite the subtle difference between MTL and meta-learning in the problem formulation, both learning paradigms share the same insight that the shared structure between existing training tasks could lead to better generalization and adaptation. In this paper, we take one important step further to understand the close connection between these two learning paradigms, through both theoretical analysis and empirical investigation. Theoretically, we first demonstrate that MTL shares the same optimization formulation with a class of gradient-based meta-learning (GBML) algorithms. We then prove that for over-parameterized neural networks with sufficient depth, the learned predictive functions of MTL and GBML are close. In particular, this result implies that the predictions given by these two models are similar over the same unseen task. Empirically, we corroborate our theoretical findings by showing that, with proper implementation, MTL is competitive against state-of-the-art GBML algorithms on a set of few-shot image classification benchmarks. Since existing GBML algorithms often involve costly second-order bi-level optimization, our first-order MTL method is an order of magnitude faster on large-scale datasets such as mini-ImageNet. We believe this work could help bridge the gap between these two learning paradigms, and provide a computationally efficient alternative to GBML that also supports fast task adaptation.

Thu 22 July 18:45 - 18:50 PDT

Q&A
Q&A