Skip to yearly menu bar Skip to main content


Session

Representation Learning 4

Moderator: Deepak Pathak

Abstract:

Chat is not available.

Thu 22 July 17:00 - 17:20 PDT

Oral
Commutative Lie Group VAE for Disentanglement Learning

Xinqi Zhu · Chang Xu · Dacheng Tao

We view disentanglement learning as discovering an underlying structure that equivariantly reflects the factorized variations shown in data. Traditionally, such a structure is fixed to be a vector space with data variations represented by translations along individual latent dimensions. We argue this simple structure is suboptimal since it requires the model to learn to discard the properties (e.g. different scales of changes, different levels of abstractness) of data variations, which is an extra work than equivariance learning. Instead, we propose to encode the data variations with groups, a structure not only can equivariantly represent variations, but can also be adaptively optimized to preserve the properties of data variations. Considering it is hard to conduct training on group structures, we focus on Lie groups and adopt a parameterization using Lie algebra. Based on the parameterization, some disentanglement learning constraints are naturally derived. A simple model named Commutative Lie Group VAE is introduced to realize the group-based disentanglement learning. Experiments show that our model can effectively learn disentangled representations without supervision, and can achieve state-of-the-art performance without extra constraints.

Thu 22 July 17:20 - 17:25 PDT

Spotlight
Self-supervised Graph-level Representation Learning with Local and Global Structure

Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang

This paper studies unsupervised/self-supervised whole-graph representation learning, which is critical in many tasks such as molecule properties prediction in drug and material discovery. Existing methods mainly focus on preserving the local similarity structure between different graph instances but fail to discover the global semantic structure of the entire data set. In this paper, we propose a unified framework called Local-instance and Global-semantic Learning (GraphLoG) for self-supervised whole-graph representation learning. Specifically, besides preserving the local similarities, GraphLoG introduces the hierarchical prototypes to capture the global semantic clusters. An efficient online expectation-maximization (EM) algorithm is further developed for learning the model. We evaluate GraphLoG by pre-training it on massive unlabeled graphs followed by fine-tuning on downstream tasks. Extensive experiments on both chemical and biological benchmark data sets demonstrate the effectiveness of the proposed approach.

Thu 22 July 17:25 - 17:30 PDT

Spotlight
Generalization Error Bound for Hyperbolic Ordinal Embedding

Atsushi Suzuki · Atsushi Nitanda · Jing Wang · Linchuan Xu · Kenji Yamanishi · Marc Cavazza

Hyperbolic ordinal embedding (HOE) represents entities as points in hyperbolic space so that they agree as well as possible with given constraints in the form of entity $i$ is more similar to entity $j$ than to entity $k$. It has been experimentally shown that HOE can obtain representations of hierarchical data such as a knowledge base and a citation network effectively, owing to hyperbolic space's exponential growth property. However, its theoretical analysis has been limited to ideal noiseless settings, and its generalization error in compensation for hyperbolic space's exponential representation ability has not been guaranteed. The difficulty is that existing generalization error bound derivations for ordinal embedding based on the Gramian matrix are not applicable in HOE, since hyperbolic space is not inner-product space. In this paper, through our novel characterization of HOE with decomposed Lorentz Gramian matrices, we provide a generalization error bound of HOE for the first time, which is at most exponential with respect to the embedding space's radius. Our comparison between the bounds of HOE and Euclidean ordinal embedding shows that HOE's generalization error comes at a reasonable cost considering its exponential representation ability.

Thu 22 July 17:30 - 17:35 PDT

Spotlight
Neighborhood Contrastive Learning Applied to Online Patient Monitoring

Hugo Yèche · Gideon Dresdner · Francesco Locatello · Matthias Hüser · Gunnar Rätsch

Intensive care units (ICU) are increasingly looking towards machine learning for methods to provide online monitoring of critically ill patients. In machine learning, online monitoring is often formulated as a supervised learning problem. Recently, contrastive learning approaches have demonstrated promising improvements over competitive supervised benchmarks. These methods rely on well-understood data augmentation techniques developed for image data which do not apply to online monitoring. In this work, we overcome this limitation by supplementing time-series data augmentation techniques with a novel contrastive learning objective which we call neighborhood contrastive learning (NCL). Our objective explicitly groups together contiguous time segments from each patient while maintaining state-specific information. Our experiments demonstrate a marked improvement over existing work applying contrastive methods to medical time-series.

Thu 22 July 17:35 - 17:40 PDT

Spotlight
Simple and Effective VAE Training with Calibrated Decoders

Oleh Rybkin · Kostas Daniilidis · Sergey Levine

Variational autoencoders (VAEs) provide an effective and simple method for modeling complex distributions. However, training VAEs often requires considerable hyperparameter tuning to determine the optimal amount of information retained by the latent variable. We study the impact of calibrated decoders, which learn the uncertainty of the decoding distribution and can determine this amount of information automatically, on the VAE performance. While many methods for learning calibrated decoders have been proposed, many of the recent papers that employ VAEs rely on heuristic hyperparameters and ad-hoc modifications instead. We perform the first comprehensive comparative analysis of calibrated decoder and provide recommendations for simple and effective VAE training. Our analysis covers a range of datasets and several single-image and sequential VAE models. We further propose a simple but novel modification to the commonly used Gaussian decoder, which computes the prediction variance analytically. We observe empirically that using heuristic modifications is not necessary with our method.

Thu 22 July 17:40 - 17:45 PDT

Spotlight
Decomposed Mutual Information Estimation for Contrastive Representation Learning

Alessandro Sordoni · Nouha Dziri · Hannes Schulz · Geoff Gordon · Philip Bachman · Remi Tachet des Combes

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Thu 22 July 17:45 - 17:50 PDT

Spotlight
Structured World Belief for Reinforcement Learning in POMDP

Gautam Singh · Skand Peri · Junghyun Kim · Hyunseok Kim · Sungjin Ahn

Object-centric world models provide structured representation of the scene and can be an important backbone in reinforcement learning and planning. However, existing approaches suffer in partially-observable environments due to the lack of belief states. In this paper, we propose Structured World Belief, a model for learning and inference of object-centric belief states. Inferred by Sequential Monte Carlo (SMC), our belief states provide multiple object-centric scene hypotheses. To synergize the benefits of SMC particles with object representations, we also propose a new object-centric dynamics model that considers the inductive bias of object permanence. This enables tracking of object states even when they are invisible for a long time. To further facilitate object tracking in this regime, we allow our model to attend flexibly to any spatial location in the image which was restricted in previous models. In experiments, we show that object-centric belief provides a more accurate and robust performance for filtering and generation. Furthermore, we show the efficacy of structured world belief in improving the performance of reinforcement learning, planning and supervised reasoning.

Thu 22 July 17:50 - 17:55 PDT

Q&A
Q&A