Skip to yearly menu bar Skip to main content


Session

Applications (NLP) 2

Moderator: Jacob Andreas

Abstract:

Chat is not available.

Thu 22 July 17:00 - 17:20 PDT

Oral
Global Prosody Style Transfer Without Text Transcriptions

Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson

Prosody plays an important role in characterizing the style of a speaker or an emotion, but most non-parallel voice or emotion style transfer algorithms do not convert any prosody information. Two major components of prosody are pitch and rhythm. Disentangling the prosody information, particularly the rhythm component, from the speech is challenging because it involves breaking the synchrony between the input speech and the disentangled speech representation. As a result, most existing prosody style transfer algorithms would need to rely on some form of text transcriptions to identify the content information, which confines their application to high-resource languages only. Recently, SpeechSplit has made sizeable progress towards unsupervised prosody style transfer, but it is unable to extract high-level global prosody style in an unsupervised manner. In this paper, we propose AutoPST, which can disentangle global prosody style from speech without relying on any text transcriptions. AutoPST is an Autoencoder-based Prosody Style Transfer framework with a thorough rhythm removal module guided by the self-expressive representation learning. Experiments on different style transfer tasks show that AutoPST can effectively convert prosody that correctly reflects the styles of the target domains.

Thu 22 July 17:20 - 17:25 PDT

Spotlight
SoundDet: Polyphonic Moving Sound Event Detection and Localization from Raw Waveform

Yuhang He · Niki Trigoni · Andrew Markham

We present a new framework SoundDet, which is an end-to-end trainable and light-weight framework, for polyphonic moving sound event detection and localization. Prior methods typically approach this problem by preprocessing raw waveform into time-frequency representations, which is more amenable to process with well-established image processing pipelines. Prior methods also detect in segment-wise manner, leading to incomplete and partial detections. SoundDet takes a novel approach and directly consumes the raw, multichannel waveform and treats the spatio-temporal sound event as a complete ``sound-object" to be detected. Specifically, SoundDet consists of a backbone neural network and two parallel heads for temporal detection and spatial localization, respectively. Given the large sampling rate of raw waveform, the backbone network first learns a set of phase-sensitive and frequency-selective bank of filters to explicitly retain direction-of-arrival information, whilst being highly computationally and parametrically efficient than standard 1D/2D convolution. A dense sound event proposal map is then constructed to handle the challenges of predicting events with large varying temporal duration. Accompanying the dense proposal map are a temporal overlapness map and a motion smoothness map that measure a proposal's confidence to be an event from temporal detection accuracy and movement consistency perspective. Involving the two maps guarantees SoundDet to be trained in a spatio-temporally unified manner. Experimental results on the public DCASE dataset show the advantage of SoundDet on both segment-based evaluation and our newly proposed event-based evaluation system.

Thu 22 July 17:25 - 17:30 PDT

Spotlight
EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture

Chenfeng Miao · Liang Shuang · Zhengchen Liu · Chen Minchuan · Jun Ma · Shaojun Wang · Jing Xiao

In this work, we address the Text-to-Speech (TTS) task by proposing a non-autoregressive architecture called EfficientTTS. Unlike the dominant non-autoregressive TTS models, which are trained with the need of external aligners, EfficientTTS optimizes all its parameters with a stable, end-to-end training procedure, allowing for synthesizing high quality speech in a fast and efficient manner. EfficientTTS is motivated by a new monotonic alignment modeling approach, which specifies monotonic constraints to the sequence alignment with almost no increase of computation. By combining EfficientTTS with different feed-forward network structures, we develop a family of TTS models, including both text-to-melspectrogram and text-to-waveform networks. We experimentally show that the proposed models significantly outperform counterpart models such as Tacotron 2 and Glow-TTS in terms of speech quality, training efficiency and synthesis speed, while still producing the speeches of strong robustness and great diversity. In addition, we demonstrate that proposed approach can be easily extended to autoregressive models such as Tacotron 2.

Thu 22 July 17:30 - 17:35 PDT

Spotlight
Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

Jaehyeon Kim · Jungil Kong · Juhee Son

Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In this work, we present a parallel end-to-end TTS method that generates more natural sounding audio than current two-stage models. Our method adopts variational inference augmented with normalizing flows and an adversarial training process, which improves the expressive power of generative modeling. We also propose a stochastic duration predictor to synthesize speech with diverse rhythms from input text. With the uncertainty modeling over latent variables and the stochastic duration predictor, our method expresses the natural one-to-many relationship in which a text input can be spoken in multiple ways with different pitches and rhythms. A subjective human evaluation (mean opinion score, or MOS) on the LJ Speech, a single speaker dataset, shows that our method outperforms the best publicly available TTS systems and achieves a MOS comparable to ground truth.

Thu 22 July 17:35 - 17:40 PDT

Spotlight
Learning de-identified representations of prosody from raw audio

Jack Weston · Raphael Lenain · Udeepa Meepegama · Emil Fristed

We propose a method for learning de-identified prosody representations from raw audio using a contrastive self-supervised signal. Whereas prior work has relied on conditioning models with bottlenecks, we introduce a set of inductive biases that exploit the natural structure of prosody to minimize timbral information and decouple prosody from speaker representations. Despite aggressive downsampling of the input and having no access to linguistic information, our model performs comparably to state-of-the-art speech representations on DAMMP, a new benchmark we introduce for spoken language understanding. We use minimum description length probing to show that our representations have selectively learned the subcomponents of non-timbral prosody, and that the product quantizer naturally disentangles them without using bottlenecks. We derive an information-theoretic definition of speech de-identifiability and use it to demonstrate that our prosody representations are less identifiable than the other speech representations.

Thu 22 July 17:40 - 17:45 PDT

Spotlight
UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data

Chengyi Wang · Yu Wu · Yao Qian · Kenichi Kumatani · Shujie Liu · Furu Wei · Michael Zeng · Xuedong Huang

In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both labeled and unlabeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4\% and 26.9\% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also verified on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6\% against the previous approach.

Thu 22 July 17:45 - 17:50 PDT

Spotlight
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

Zhanpeng Zeng · Yunyang Xiong · Sathya Ravi · Shailesh Acharya · Glenn Fung · Vikas Singh

Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures). We evaluate our algorithm on the GLUE benchmark with standard 512 sequence length where we see favorable performance relative to a standard pretrained Transformer. On the Long Range Arena (LRA) benchmark, for evaluating performance on long sequences, our method achieves results consistent with softmax self-attention but with sizable speed-ups and memory savings and often outperforms other efficient self-attention methods. Our code is available at https://github.com/mlpen/YOSO.

Thu 22 July 17:50 - 17:55 PDT

Q&A
Q&A