Skip to yearly menu bar Skip to main content


Session

Adversarial Learning 2

Moderator: Hamed Hassani

Abstract:

Chat is not available.

Thu 22 July 7:00 - 7:20 PDT

Oral
CARTL: Cooperative Adversarially-Robust Transfer Learning

Dian Chen · Hongxin Hu · Qian Wang · Li Yinli · Cong Wang · Chao Shen · Qi Li

Transfer learning eases the burden of training a well-performed model from scratch, especially when training data is scarce and computation power is limited. In deep learning, a typical strategy for transfer learning is to freeze the early layers of a pre-trained model and fine-tune the rest of its layers on the target domain. Previous work focuses on the accuracy of the transferred model but neglects the transfer of adversarial robustness. In this work, we first show that transfer learning improves the accuracy on the target domain but degrades the inherited robustness of the target model. To address such a problem, we propose a novel cooperative adversarially-robust transfer learning (CARTL) by pre-training the model via feature distance minimization and fine-tuning the pre-trained model with non-expansive fine-tuning for target domain tasks. Empirical results show that CARTL improves the inherited robustness by about 28% at most compared with the baseline with the same degree of accuracy. Furthermore, we study the relationship between the batch normalization (BN) layers and the robustness in the context of transfer learning, and we reveal that freezing BN layers can further boost the robustness transfer.

Thu 22 July 7:20 - 7:25 PDT

Spotlight
Skew Orthogonal Convolutions

Sahil Singla · Soheil Feizi

Training convolutional neural networks with a Lipschitz constraint under the $l_{2}$ norm is useful for provable adversarial robustness, interpretable gradients, stable training, etc. While 1-Lipschitz networks can be designed by imposing a 1-Lipschitz constraint on each layer, training such networks requires each layer to be gradient norm preserving (GNP) to prevent gradients from vanishing. However, existing GNP convolutions suffer from slow training, lead to significant reduction in accuracy and provide no guarantees on their approximations. In this work, we propose a GNP convolution layer called \textbf{S}kew \textbf{O}rthogonal \textbf{C}onvolution (SOC) that uses the following mathematical property: when a matrix is {\it Skew-Symmetric}, its exponential function is an {\it orthogonal} matrix. To use this property, we first construct a convolution filter whose Jacobian is Skew-Symmetric. Then, we use the Taylor series expansion of the Jacobian exponential to construct the SOC layer that is orthogonal. To efficiently implement SOC, we keep a finite number of terms from the Taylor series and provide a provable guarantee on the approximation error. Our experiments on CIFAR-10 and CIFAR-100 show that SOC allows us to train provably Lipschitz, large convolutional neural networks significantly faster than prior works while achieving significant improvements for both standard and certified robust accuracies.

Thu 22 July 7:25 - 7:30 PDT

Spotlight
Lower Bounds on Cross-Entropy Loss in the Presence of Test-time Adversaries

Arjun Nitin Bhagoji · Daniel Cullina · Vikash Sehwag · Prateek Mittal

Understanding the fundamental limits of robust supervised learning has emerged as a problem of immense interest, from both practical and theoretical standpoints. In particular, it is critical to determine classifier-agnostic bounds on the training loss to establish when learning is possible. In this paper, we determine optimal lower bounds on the cross-entropy loss in the presence of test-time adversaries, along with the corresponding optimal classification outputs. Our formulation of the bound as a solution to an optimization problem is general enough to encompass any loss function depending on soft classifier outputs. We also propose and provide a proof of correctness for a bespoke algorithm to compute this lower bound efficiently, allowing us to determine lower bounds for multiple practical datasets of interest. We use our lower bounds as a diagnostic tool to determine the effectiveness of current robust training methods and find a gap from optimality at larger budgets. Finally, we investigate the possibility of using of optimal classification outputs as soft labels to empirically improve robust training.

Thu 22 July 7:30 - 7:35 PDT

Spotlight
Defense against backdoor attacks via robust covariance estimation

Jonathan Hayase · Weihao Kong · Raghav Somani · Sewoong Oh

Modern machine learning increasingly requires training on a large collection of data from multiple sources, not all of which can be trusted. A particularly frightening scenario is when a small fraction of corrupted data changes the behavior of the trained model when triggered by an attacker-specified watermark. Such a compromised model will be deployed unnoticed as the model is accurate otherwise. There has been promising attempts to use the intermediate representations of such a model to separate corrupted examples from clean ones. However, these methods require a significant fraction of the data to be corrupted, in order to have strong enough signal for detection. We propose a novel defense algorithm using robust covariance estimation to amplify the spectral signature of corrupted data. This defense is able to completely remove backdoors whenever the benchmark backdoor attacks are successful, even in regimes where previous methods have no hope for detecting poisoned examples.

Thu 22 July 7:35 - 7:40 PDT

Spotlight
Adversarial Purification with Score-based Generative Models

Jongmin Yoon · Sung Ju Hwang · Juho Lee

While adversarial training is considered as a standard defense method against adversarial attacks for image classifiers, adversarial purification, which purifies attacked images into clean images with a standalone purification, model has shown promises as an alternative defense method. Recently, an EBM trained with MCMC has been highlighted as a purification model, where an attacked image is purified by running a long Markov-chain using the gradients of the EBM. Yet, the practicality of the adversarial purification using an EBM remains questionable because the number of MCMC steps required for such purification is too large. In this paper, we propose a novel adversarial purification method based on an EBM trained with DSM. We show that an EBM trained with DSM can quickly purify attacked images within a few steps. We further introduce a simple yet effective randomized purification scheme that injects random noises into images before purification. This process screens the adversarial perturbations imposed on images by the random noises and brings the images to the regime where the EBM can denoise well. We show that our purification method is robust against various attacks and demonstrate its state-of-the-art performances.

Thu 22 July 7:40 - 7:45 PDT

Spotlight
Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks

Nezihe Merve Gürel · Xiangyu Qi · Luka Rimanic · Ce Zhang · Bo Li

Despite the great successes achieved by deep neural networks (DNNs), recent studies show that they are vulnerable against adversarial examples, which aim to mislead DNNs by adding small adversarial perturbations. Several defenses have been proposed against such attacks, while many of them have been adaptively attacked. In this work, we aim to enhance the ML robustness from a different perspective by leveraging domain knowledge: We propose a Knowledge Enhanced Machine Learning Pipeline (KEMLP) to integrate domain knowledge (i.e., logic relationships among different predictions) into a probabilistic graphical model via first-order logic rules. In particular, we develop KEMLP by integrating a diverse set of weak auxiliary models based on their logical relationships to the main DNN model that performs the target task. Theoretically, we provide convergence results and prove that, under mild conditions, the prediction of KEMLP is more robust than that of the main DNN model. Empirically, we take road sign recognition as an example and leverage the relationships between road signs and their shapes and contents as domain knowledge. We show that compared with adversarial training and other baselines, KEMLP achieves higher robustness against physical attacks, $\mathcal{L}_p$ bounded attacks, unforeseen attacks, and natural corruptions under both whitebox and blackbox settings, while still maintaining high clean accuracy.

Thu 22 July 7:45 - 7:50 PDT

Spotlight
To be Robust or to be Fair: Towards Fairness in Adversarial Training

Han Xu · Xiaorui Liu · Yaxin Li · Anil Jain · Jiliang Tang

Adversarial training algorithms have been proved to be reliable to improve machine learning models' robustness against adversarial examples. However, we find that adversarial training algorithms tend to introduce severe disparity of accuracy and robustness between different groups of data. For instance, PGD adversarially trained ResNet18 model on CIFAR-10 has 93% clean accuracy and 67% PGD l_infty-8 adversarial accuracy on the class ''automobile'' but only 65% and 17% on class ''cat''. This phenomenon happens in balanced datasets and does not exist in naturally trained models when only using clean samples. In this work, we empirically and theoretically show that this phenomenon can generally happen under adversarial training algorithms which minimize DNN models' robust errors. Motivated by these findings, we propose a Fair-Robust-Learning (FRL) framework to mitigate this unfairness problem when doing adversarial defenses and experimental results validate the effectiveness of FRL.

Thu 22 July 7:50 - 7:55 PDT

Q&A
Q&A