Session
Fairness
Moderator: Hoda Heidari
Fair Selective Classification Via Sufficiency
Joshua Lee · Yuheng Bu · Deepta Rajan · Prasanna Sattigeri · Rameswar Panda · Subhro Das · Gregory Wornell
Selective classification is a powerful tool for decision-making in scenarios where mistakes are costly but abstentions are allowed. In general, by allowing a classifier to abstain, one can improve the performance of a model at the cost of reducing coverage and classifying fewer samples. However, recent work has shown, in some cases, that selective classification can magnify disparities between groups, and has illustrated this phenomenon on multiple real-world datasets. We prove that the sufficiency criterion can be used to mitigate these disparities by ensuring that selective classification increases performance on all groups, and introduce a method for mitigating the disparity in precision across the entire coverage scale based on this criterion. We then provide an upper bound on the conditional mutual information between the class label and sensitive attribute, conditioned on the learned features, which can be used as a regularizer to achieve fairer selective classification. The effectiveness of the method is demonstrated on the Adult, CelebA, Civil Comments, and CheXpert datasets.
Learning Representations by Humans, for Humans
Sophie Hilgard · Nir Rosenfeld · Mahzarin Banaji · Jack Cao · David Parkes
When machine predictors can achieve higher performance than the human decision-makers they support, improving the performance of human decision-makers is often conflated with improving machine accuracy. Here we propose a framework to directly support human decision-making, in which the role of machines is to reframe problems rather than to prescribe actions through prediction. Inspired by the success of representation learning in improving performance of machine predictors, our framework learns human-facing representations optimized for human performance. This “Mind Composed with Machine” framework incorporates a human decision-making model directly into the representation learning paradigm and is trained with a novel human-in-the-loop training procedure. We empirically demonstrate the successful application of the framework to various tasks and representational forms.
Strategic Classification in the Dark
Ganesh Ghalme · Vineet Nair · Itay Eilat · Inbal Talgam-Cohen · Nir Rosenfeld
Strategic classification studies the interaction between a classification rule and the strategic agents it governs. Agents respond by manipulating their features, under the assumption that the classifier is known. However, in many real-life scenarios of high-stake classification (e.g., credit scoring), the classifier is not revealed to the agents, which leads agents to attempt to learn the classifier and game it too. In this paper we generalize the strategic classification model to such scenarios and analyze the effect of an unknown classifier. We define the ''price of opacity'' as the difference between the prediction error under the opaque and transparent policies, characterize it, and give a sufficient condition for it to be strictly positive, in which case transparency is the recommended policy. Our experiments show how Hardt et al.’s robust classifier is affected by keeping agents in the dark.
Fairness for Image Generation with Uncertain Sensitive Attributes
Ajil Jalal · Sushrut Karmalkar · Jessica Hoffmann · Alexandros Dimakis · Eric Price
This work tackles the issue of fairness in the context of generative
procedures, such as image super-resolution, which entail different
definitions from the standard classification setting. Moreover,
while traditional group fairness definitions are typically defined
with respect to specified protected groups -- camouflaging the
fact that these groupings are artificial and carry historical and
political motivations -- we emphasize that there are no ground
truth identities. For instance, should South and East Asians be
viewed as a single group or separate groups? Should we consider one
race as a whole or further split by gender? Choosing which groups
are valid and who belongs in them is an impossible dilemma and being
fair'' with respect to Asians may require being
unfair'' with
respect to South Asians. This motivates the introduction of
definitions that allow algorithms to be \emph{oblivious} to the
relevant groupings.
We define several intuitive notions of group fairness and study their incompatibilities and trade-offs. We show that the natural extension of demographic parity is strongly dependent on the grouping, and \emph{impossible} to achieve obliviously. On the other hand, the conceptually new definition we introduce, Conditional Proportional Representation, can be achieved obliviously through Posterior Sampling. Our experiments validate our theoretical results and achieve fair image reconstruction using state-of-the-art generative models.
Characterizing Fairness Over the Set of Good Models Under Selective Labels
Amanda Coston · Ashesh Rambachan · Alexandra Chouldechova
Algorithmic risk assessments are used to inform decisions in a wide variety of high-stakes settings. Often multiple predictive models deliver similar overall performance but differ markedly in their predictions for individual cases, an empirical phenomenon known as the Rashomon Effect.'' These models may have different properties over various groups, and therefore have different predictive fairness properties. We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance, or
the set of good models.'' Our framework addresses the empirically relevant challenge of selectively labelled data in the setting where the selection decision and outcome are unconfounded given the observed data features. Our framework can be used to 1) audit for predictive bias; or 2) replace an existing model with one that has better fairness properties. We illustrate these use cases on a recidivism prediction task and a real-world credit-scoring task.
GANMEX: One-vs-One Attributions using GAN-based Model Explainability
Sheng-Min Shih · Pin-Ju Tien · Zohar Karnin
Attribution methods have been shown as promising approaches for identifying key features that led to learned model predictions. While most existing attribution methods rely on a baseline input for performing feature perturbations, limited research has been conducted to address the baseline selection issues. Poor choices of baselines limit the ability of one-vs-one explanations for multi-class classifiers, which means the attribution methods were not able to explain why an input belongs to its original class but not the other specified target class. Achieving one-vs-one explanation is crucial when certain classes are more similar than others, e.g. two bird types among multiple animals, by focusing on key differentiating features rather than shared features across classes. In this paper, we present GANMEX, a novel approach applying Generative Adversarial Networks (GAN) by incorporating the to-be-explained classifier as part of the adversarial networks. Our approach effectively selects the baseline as the closest realistic sample belong to the target class, which allows attribution methods to provide true one-vs-one explanations. We showed that GANMEX baselines improved the saliency maps and led to stronger performance on multiple evaluation metrics over the existing baselines. Existing attribution results are known for being insensitive to model randomization, and we demonstrated that GANMEX baselines led to better outcome under the cascading randomization of the model.
Directional Bias Amplification
Angelina Wang · Olga Russakovsky
Mitigating bias in machine learning systems requires refining our understanding of bias propagation pathways: from societal structures to large-scale data to trained models to impact on society. In this work, we focus on one aspect of the problem, namely bias amplification: the tendency of models to amplify the biases present in the data they are trained on. A metric for measuring bias amplification was introduced in the seminal work by Zhao et al. (2017); however, as we demonstrate, this metric suffers from a number of shortcomings including conflating different types of bias amplification and failing to account for varying base rates of protected attributes. We introduce and analyze a new, decoupled metric for measuring bias amplification, $BiasAmp_{\rightarrow}$ (Directional Bias Amplification). We thoroughly analyze and discuss both the technical assumptions and normative implications of this metric. We provide suggestions about its measurement by cautioning against predicting sensitive attributes, encouraging the use of confidence intervals due to fluctuations in the fairness of models across runs, and discussing the limitations of what this metric captures. Throughout this paper, we work to provide an interrogative look at the technical measurement of bias amplification, guided by our normative ideas of what we want it to encompass. Code is located at https://github.com/princetonvisualai/directional-bias-amp.