Skip to yearly menu bar Skip to main content


Session

Systems and Hardware

Moderator: Kangwook Lee

Abstract:

Chat is not available.

Thu 22 July 5:00 - 5:20 PDT

Oral
Coded-InvNet for Resilient Prediction Serving Systems

Tuan Dinh · Kangwook Lee

Inspired by a new coded computation algorithm for invertible functions, we propose Coded-InvNet a new approach to design resilient prediction serving systems that can gracefully handle stragglers or node failures. Coded-InvNet leverages recent findings in the deep learning literature such as invertible neural networks, Manifold Mixup, and domain translation algorithms, identifying interesting research directions that span across machine learning and systems. Our experimental results show that Coded-InvNet can outperform existing approaches, especially when the compute resource overhead is as low as 10%. For instance, without knowing which of the ten workers is going to fail, our algorithm can design a backup task so that it can correctly recover the missing prediction result with an accuracy of 85.9%, significantly outperforming the previous SOTA by 32.5%.

Thu 22 July 5:20 - 5:25 PDT

Spotlight
Memory-Efficient Pipeline-Parallel DNN Training

Deepak Narayanan · Amar Phanishayee · Kaiyu Shi · Xie Chen · Matei Zaharia

Many state-of-the-art ML results have been obtained by scaling up the number of parameters in existing models. However, parameters and activations for such large models often do not fit in the memory of a single accelerator device; this means that it is necessary to distribute training of large models over multiple accelerators. In this work, we propose PipeDream-2BW, a system that supports memory-efficient pipeline parallelism. PipeDream-2BW uses a novel pipelining and weight gradient coalescing strategy, combined with the double buffering of weights, to ensure high throughput, low memory footprint, and weight update semantics similar to data parallelism. In addition, PipeDream-2BW automatically partitions the model over the available hardware resources, while respecting hardware constraints such as memory capacities of accelerators and interconnect topologies. PipeDream-2BW can accelerate the training of large GPT and BERT language models by up to 20x with similar final model accuracy.

Thu 22 July 5:25 - 5:30 PDT

Spotlight
Putting the ``Learning" into Learning-Augmented Algorithms for Frequency Estimation

Elbert Du · Franklyn Wang · Michael Mitzenmacher

In learning-augmented algorithms, algorithms are enhanced using information from a machine learning algorithm. In turn, this suggests that we should tailor our machine-learning approach for the target algorithm. We here consider this synergy in the context of the learned count-min sketch from (Hsu et al., 2019). Learning here is used to predict heavy hitters from a data stream, which are counted explicitly outside the sketch. We show that an approximately sufficient statistic for the performance of the underlying count-min sketch is given by the coverage of the predictor, or the normalized $L^1$ norm of keys that are filtered by the predictor to be explicitly counted. We show that machine learning models which are trained to optimize for coverage lead to large improvements in performance over prior approaches according to the average absolute frequency error. Our source code can be found at https://github.com/franklynwang/putting-the-learning-in-LAA.

Thu 22 July 5:30 - 5:35 PDT

Spotlight
Robust Testing and Estimation under Manipulation Attacks

Jayadev Acharya · Ziteng Sun · Huanyu Zhang

We study robust testing and estimation of discrete distributions in the strong contamination model. Our results cover both centralized setting and distributed setting with general local information constraints including communication and LDP constraints. Our technique relates the strength of manipulation attacks to the earth-mover distance using Hamming distance as the metric between messages (samples) from the users. In the centralized setting, we provide optimal error bounds for both learning and testing. Our lower bounds under local information constraints build on the recent lower bound methods in distributed inference. In the communication constrained setting, we develop novel algorithms based on random hashing and an L1-L1 isometry.

Thu 22 July 5:35 - 5:40 PDT

Spotlight
Optimization Planning for 3D ConvNets

Zhaofan Qiu · Ting Yao · Chong-Wah Ngo · Tao Mei

It is not trivial to optimally learn a 3D Convolutional Neural Networks (3D ConvNets) due to high complexity and various options of the training scheme. The most common hand-tuning process starts from learning 3D ConvNets using short video clips and then is followed by learning long-term temporal dependency using lengthy clips, while gradually decaying the learning rate from high to low as training progresses. The fact that such process comes along with several heuristic settings motivates the study to seek an optimal "path" to automate the entire training. In this paper, we decompose the path into a series of training "states" and specify the hyper-parameters, e.g., learning rate and the length of input clips, in each state. The estimation of the knee point on the performance-epoch curve triggers the transition from one state to another. We perform dynamic programming over all the candidate states to plan the optimal permutation of states, i.e., optimization path. Furthermore, we devise a new 3D ConvNets with a unique design of dual-head classifier to improve spatial and temporal discrimination. Extensive experiments on seven public video recognition benchmarks demonstrate the advantages of our proposal. With the optimization planning, our 3D ConvNets achieves superior results when comparing to the state-of-the-art recognition methods. More remarkably, we obtain the top-1 accuracy of 80.5% and 82.7% on Kinetics-400 and Kinetics-600 datasets, respectively.

Thu 22 July 5:40 - 5:45 PDT

Spotlight
Robust Learning-Augmented Caching: An Experimental Study

Jakub Chłędowski · Adam Polak · Bartosz Szabucki · Konrad Zolna

Effective caching is crucial for performance of modern-day computing systems. A key optimization problem arising in caching -- which item to evict to make room for a new item -- cannot be optimally solved without knowing the future. There are many classical approximation algorithms for this problem, but more recently researchers started to successfully apply machine learning to decide what to evict by discovering implicit input patterns and predicting the future. While machine learning typically does not provide any worst-case guarantees, the new field of learning-augmented algorithms proposes solutions which leverage classical online caching algorithms to make the machine-learned predictors robust. We are the first to comprehensively evaluate these learning-augmented algorithms on real-world caching datasets and state-of-the-art machine-learned predictors. We show that a straightforward method -- blindly following either a predictor or a classical robust algorithm, and switching whenever one becomes worse than the other -- has only a low overhead over a well-performing predictor, while competing with classical methods when the coupled predictor fails, thus providing a cheap worst-case insurance.

Thu 22 July 5:45 - 5:50 PDT

Spotlight
Parallel Droplet Control in MEDA Biochips using Multi-Agent Reinforcement Learning

Tung-Che Liang · Jin Zhou · Yun-Sheng Chan · Tsung-Yi Ho · Krishnendu Chakrabarty · Cy Lee

Microfluidic biochips are being utilized for clinical diagnostics, including COVID-19 testing, because of they provide sample-to-result turnaround at low cost. Recently, microelectrode-dot-array (MEDA) biochips have been proposed to advance microfluidics technology. A MEDA biochip manipulates droplets of nano/picoliter volumes to automatically execute biochemical protocols. During bioassay execution, droplets are transported in parallel to achieve high-throughput outcomes. However, a major concern associated with the use of MEDA biochips is microelectrode degradation over time. Recent work has shown that formulating droplet transportation as a reinforcement-learning (RL) problem enables the training of policies to capture the underlying health conditions of microelectrodes and ensure reliable fluidic operations. However, the above RL-based approach suffers from two key limitations: 1) it cannot be used for concurrent transportation of multiple droplets; 2) it requires the availability of CCD cameras for monitoring droplet movement. To overcome these problems, we present a multi-agent reinforcement learning (MARL) droplet-routing solution that can be used for various sizes of MEDA biochips with integrated sensors, and we demonstrate the reliable execution of a serial-dilution bioassay with the MARL droplet router on a fabricated MEDA biochip. To facilitate further research, we also present a simulation environment based on the PettingZoo Gym Interface for MARL-guided droplet-routing problems on MEDA biochips.

Thu 22 July 5:50 - 5:55 PDT

Q&A
Q&A