Moderator: Thomas Trogdon

Abstract:

Chat is not available.

Wed 21 July 19:00 - 19:20 PDT

(Oral)

Tyler Chen · Thomas Trogdon · Shashanka Ubaru

The cumulative empirical spectral measure (CESM) $\Phi[\mathbf{A}] : \mathbb{R} \to [0,1]$ of a $n\times n$ symmetric matrix $\mathbf{A}$ is defined as the fraction of eigenvalues of $\mathbf{A}$ less than a given threshold, i.e., $\Phi[\mathbf{A}](x) := \sum_{i=1}^{n} \frac{1}{n} {\large\unicode{x1D7D9}}[ \lambda_i[\mathbf{A}]\leq x]$. Spectral sums $\operatorname{tr}(f[\mathbf{A}])$ can be computed as the Riemann--Stieltjes integral of $f$ against $\Phi[\mathbf{A}]$, so the task of estimating CESM arises frequently in a number of applications, including machine learning. We present an error analysis for stochastic Lanczos quadrature (SLQ). We show that SLQ obtains an approximation to the CESM within a Wasserstein distance of $t \: | \lambda_{\text{max}}[\mathbf{A}] - \lambda_{\text{min}}[\mathbf{A}] |$ with probability at least $1-\eta$, by applying the Lanczos algorithm for $\lceil 12 t^{-1} + \frac{1}{2} \rceil$ iterations to $\lceil 4 ( n+2 )^{-1}t^{-2} \ln(2n\eta^{-1}) \rceil$ vectors sampled independently and uniformly from the unit sphere. We additionally provide (matrix-dependent) a posteriori error bounds for the Wasserstein and Kolmogorov--Smirnov distances between the output of this algorithm and the true CESM. The quality of our bounds is demonstrated using numerical experiments.

Wed 21 July 19:20 - 19:25 PDT

(Spotlight)

Jie Shen

We study efficient PAC learning of homogeneous halfspaces in $\mathbb{R}^d$ in the presence of malicious noise of Valiant (1985). This is a challenging noise model and only until recently has near-optimal noise tolerance bound been established under the mild condition that the unlabeled data distribution is isotropic log-concave. However, it remains unsettled how to obtain the optimal sample complexity simultaneously. In this work, we present a new analysis for the algorithm of Awasthi et al. (2017) and show that it essentially achieves the near-optimal sample complexity bound of $\tilde{O}(d)$, improving the best known result of $\tilde{O}(d^2)$. Our main ingredient is a novel incorporation of a matrix Chernoff-type inequality to bound the spectrum of an empirical covariance matrix for well-behaved distributions, in conjunction with a careful exploration of the localization schemes of Awasthi et al. (2017). We further extend the algorithm and analysis to the more general and stronger nasty noise model of Bshouty et al. (2002), showing that it is still possible to achieve near-optimal noise tolerance and sample complexity in polynomial time.

Wed 21 July 19:25 - 19:30 PDT

(Spotlight)

Zifan Liu · Jong Ho Park · Theo Rekatsinas · Christos Tzamos

We study the problem of robust mean estimation and introduce a novel Hamming distance-based measure of distribution shift for coordinate-level corruptions. We show that this measure yields adversary models that capture more realistic corruptions than those used in prior works, and present an information-theoretic analysis of robust mean estimation in these settings. We show that for structured distributions, methods that leverage the structure yield information theoretically more accurate mean estimation. We also focus on practical algorithms for robust mean estimation and study when data cleaning-inspired approaches that first fix corruptions in the input data and then perform robust mean estimation can match the information theoretic bounds of our analysis. We finally demonstrate experimentally that this two-step approach outperforms structure-agnostic robust estimation and provides accurate mean estimation even for high-magnitude corruption.

Wed 21 July 19:30 - 19:35 PDT

(Spotlight)

Erik Demaine · Adam C Hesterberg · Frederic Koehler · Jayson Lynch · John C Urschel

Metric Multidimensional scaling (MDS) is a classical method for generating meaningful (non-linear) low-dimensional embeddings of high-dimensional data. MDS has a long history in the statistics, machine learning, and graph drawing communities. In particular, the Kamada-Kawai force-directed graph drawing method is equivalent to MDS and is one of the most popular ways in practice to embed graphs into low dimensions. Despite its ubiquity, our theoretical understanding of MDS remains limited as its objective function is highly non-convex. In this paper, we prove that minimizing the Kamada-Kawai objective is NP-hard and give a provable approximation algorithm for optimizing it, which in particular is a PTAS on low-diameter graphs. We supplement this result with experiments suggesting possible connections between our greedy approximation algorithm and gradient-based methods.

Wed 21 July 19:35 - 19:40 PDT

(Spotlight)

Zhun Deng · Hangfeng He · Weijie Su

Algorithmic stability is a key characteristic to ensure the generalization ability of a learning algorithm. Among different notions of stability, \emph{uniform stability} is arguably the most popular one, which yields exponential generalization bounds. However, uniform stability only considers the worst-case loss change (or so-called sensitivity) by removing a single data point, which is distribution-independent and therefore undesirable. There are many cases that the worst-case sensitivity of the loss is much larger than the average sensitivity taken over the single data point that is removed, especially in some advanced models such as random feature models or neural networks. Many previous works try to mitigate the distribution independent issue by proposing weaker notions of stability, however, they either only yield polynomial bounds or the bounds derived do not vanish as sample size goes to infinity. Given that, we propose \emph{locally elastic stability} as a weaker and distribution-dependent stability notion, which still yields exponential generalization bounds. We further demonstrate that locally elastic stability implies tighter generalization bounds than those derived based on uniform stability in many situations by revisiting the examples of bounded support vector machines, regularized least square regressions, and stochastic gradient descent.

Wed 21 July 19:40 - 19:45 PDT

(Spotlight)

Jonathan Lacotte · Yifei Wang · Mert Pilanci

We propose a randomized algorithm with quadratic convergence rate for convex optimization problems with a self-concordant, composite, strongly convex objective function. Our method is based on performing an approximate Newton step using a random projection of the Hessian. Our first contribution is to show that, at each iteration, the embedding dimension (or sketch size) can be as small as the effective dimension of the Hessian matrix. Leveraging this novel fundamental result, we design an algorithm with a sketch size proportional to the effective dimension and which exhibits a quadratic rate of convergence. This result dramatically improves on the classical linear-quadratic convergence rates of state-of-the-art sub-sampled Newton methods. However, in most practical cases, the effective dimension is not known beforehand, and this raises the question of how to pick a sketch size as small as the effective dimension while preserving a quadratic convergence rate. Our second and main contribution is thus to propose an adaptive sketch size algorithm with quadratic convergence rate and which does not require prior knowledge or estimation of the effective dimension: at each iteration, it starts with a small sketch size, and increases it until quadratic progress is achieved. Importantly, we show that the embedding dimension remains proportional to the effective dimension throughout the entire path and that our method achieves state-of-the-art computational complexity for solving convex optimization programs with a strongly convex component. We discuss and illustrate applications to linear and quadratic programming, as well as logistic regression and other generalized linear models.

Wed 21 July 19:45 - 19:50 PDT

(Spotlight)

Jie Ren · Mingjie Li · Zexu Liu · Quanshi Zhang

This paper aims to define, visualize, and analyze the feature complexity that is learned by a DNN. We propose a generic definition for the feature complexity. Given the feature of a certain layer in the DNN, our method decomposes and visualizes feature components of different complexity orders from the feature. The feature decomposition enables us to evaluate the reliability, the effectiveness, and the significance of over-fitting of these feature components. Furthermore, such analysis helps to improve the performance of DNNs. As a generic method, the feature complexity also provides new insights into existing deep-learning techniques, such as network compression and knowledge distillation.